Outside the Closed World: On Using Machine Learning for Network Intrusion Detection

Robin Sommer

International Computer Science Institute, & Lawrence Berkeley National Laboratory

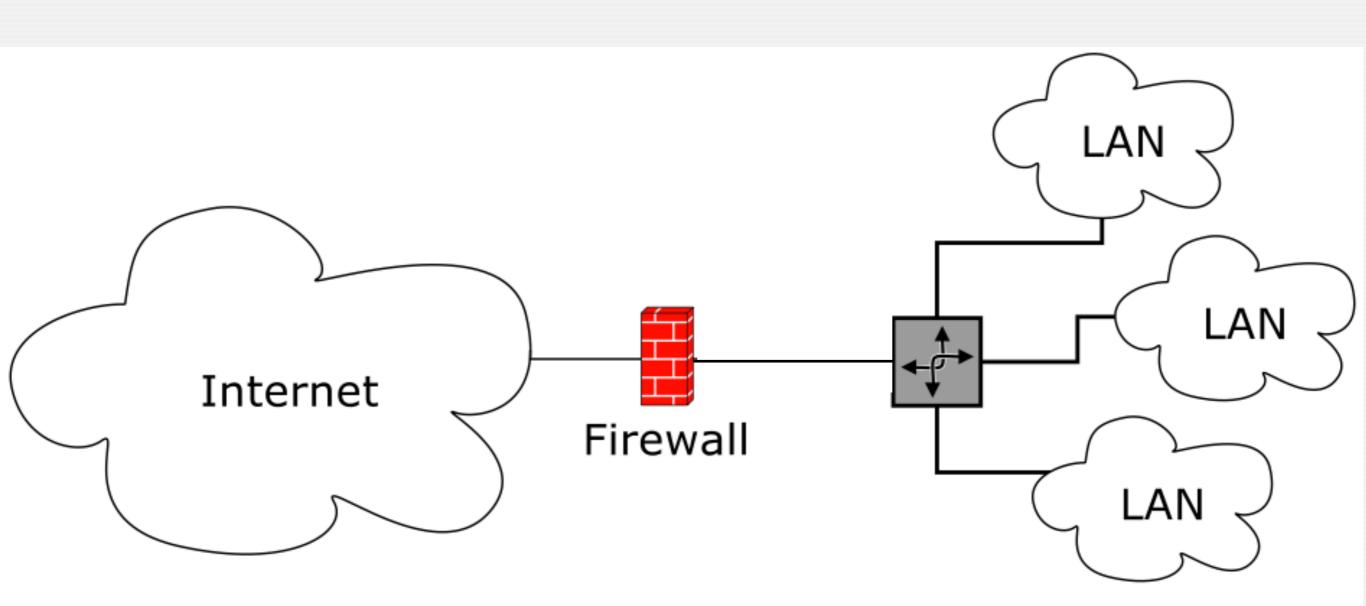
Vern Paxson

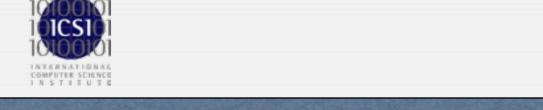
International Computer Science Institute, & University of California, Berkeley

IEEE Symposium on Security and Privacy

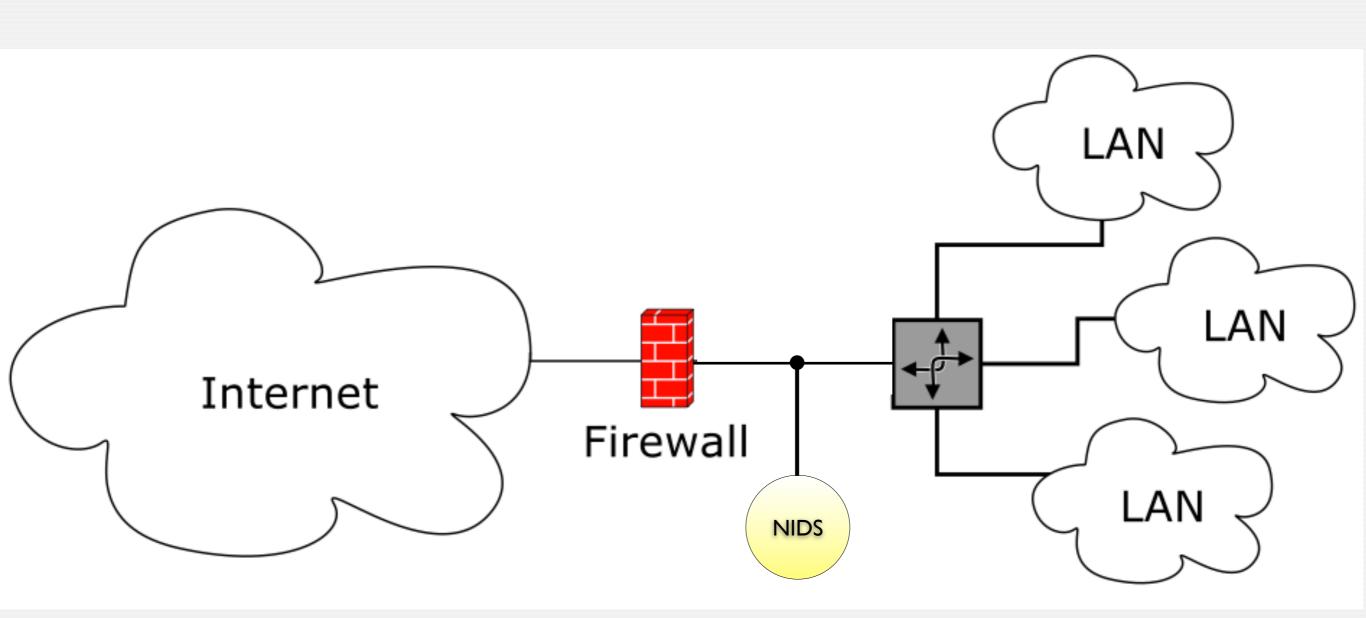
May 2010

Network Intrusion Detection



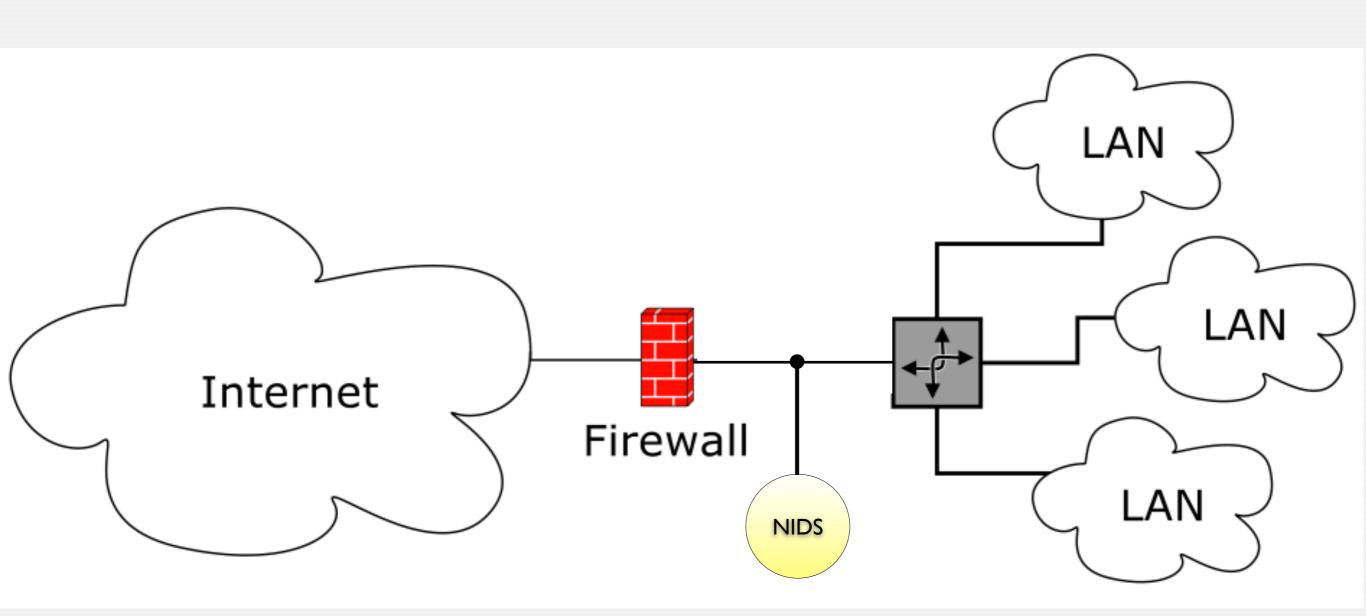


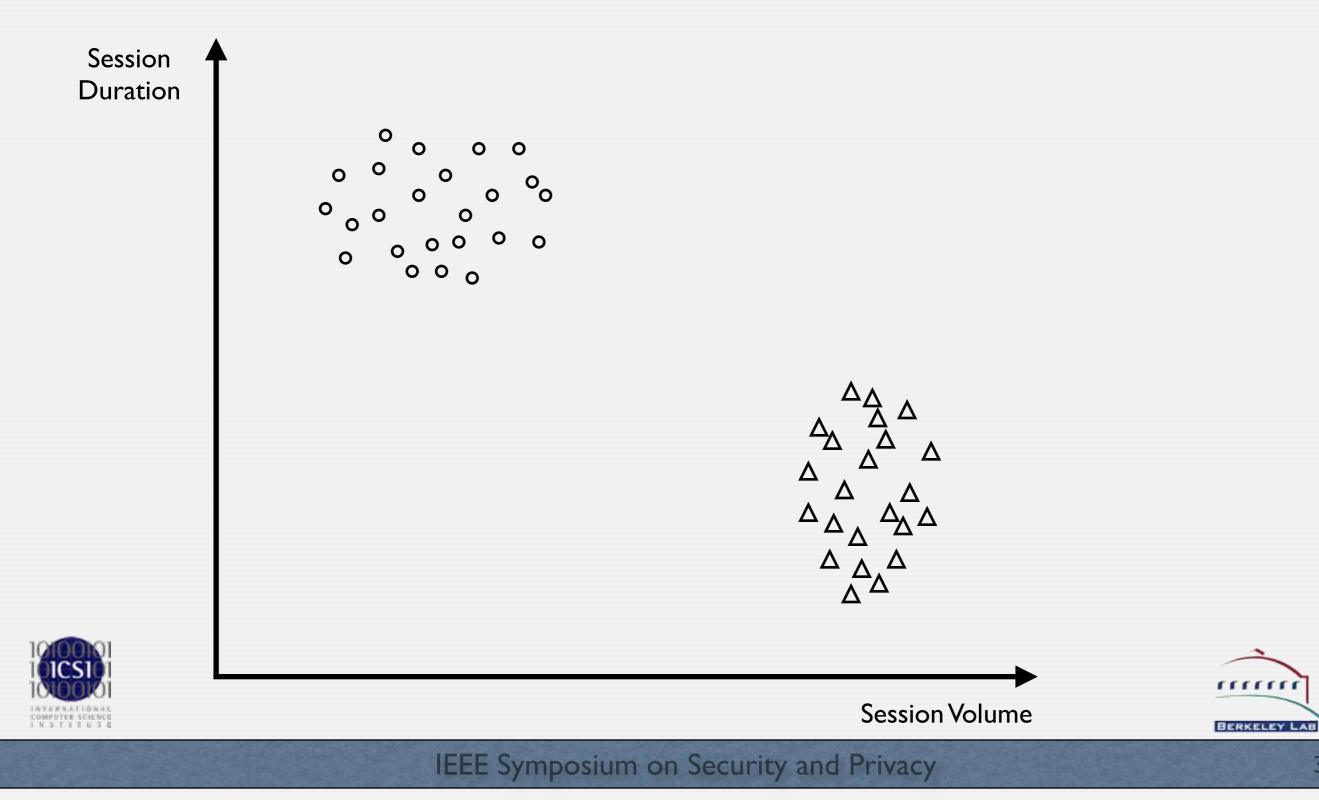
Network Intrusion Detection



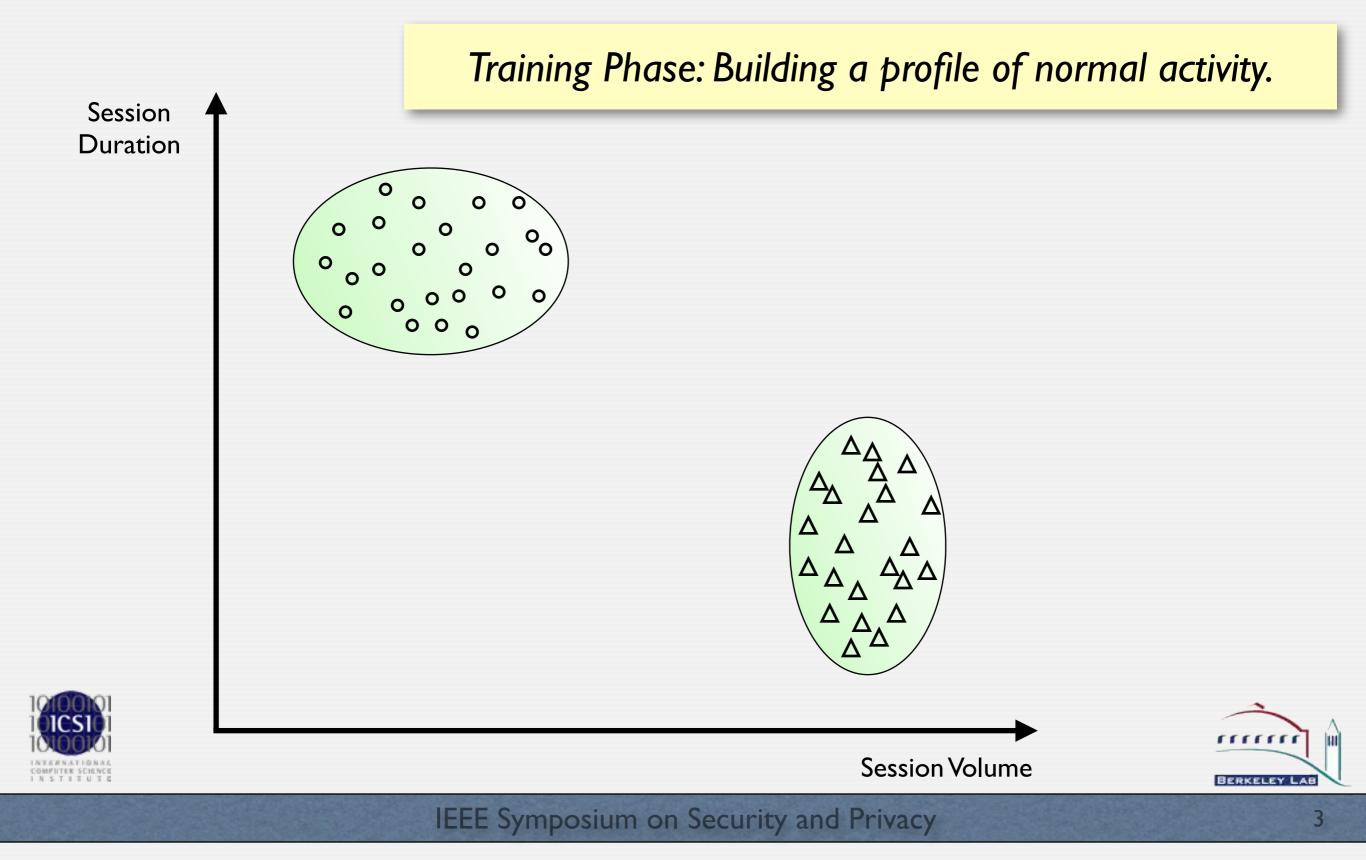
BERKELEYLAB

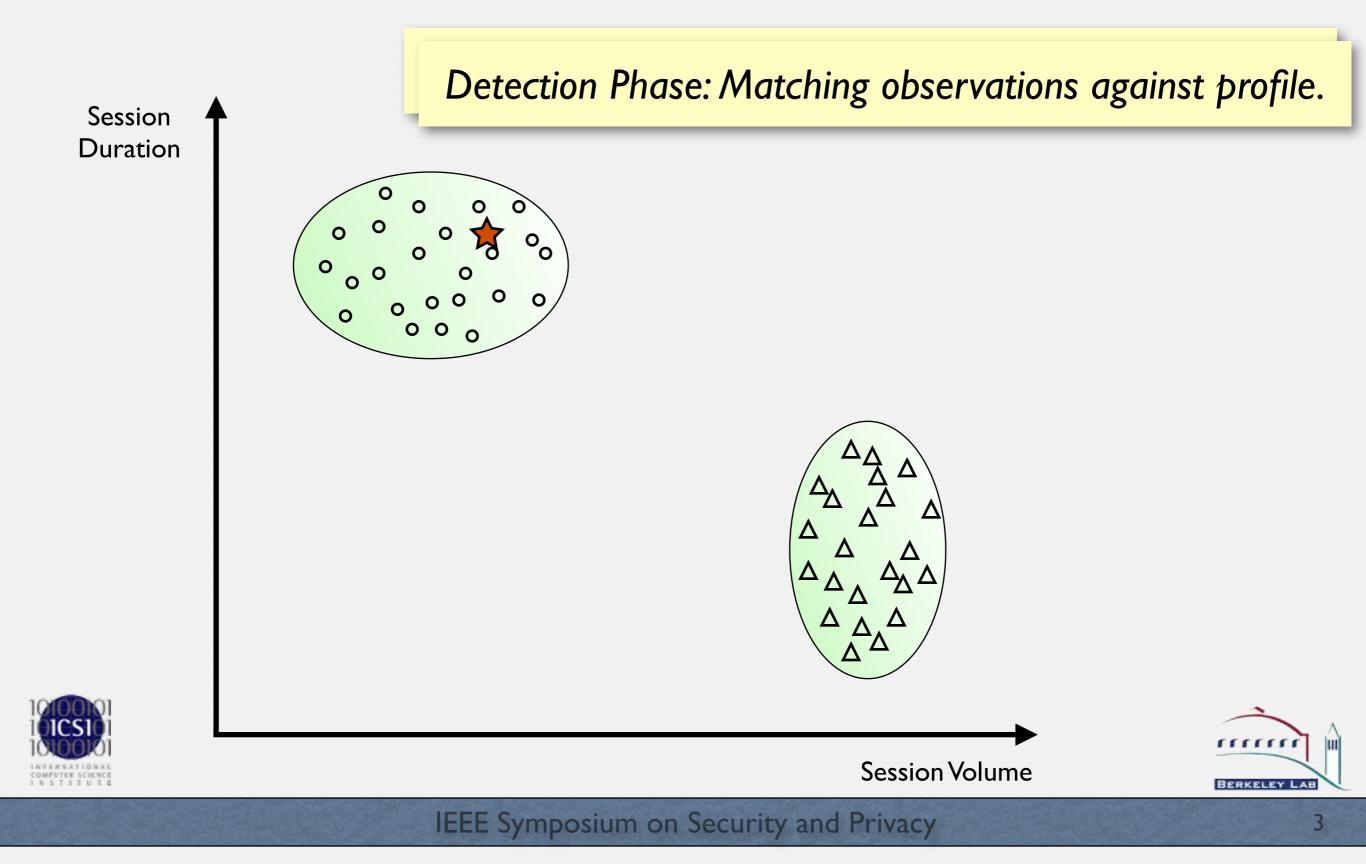
Network Intrusion Detection

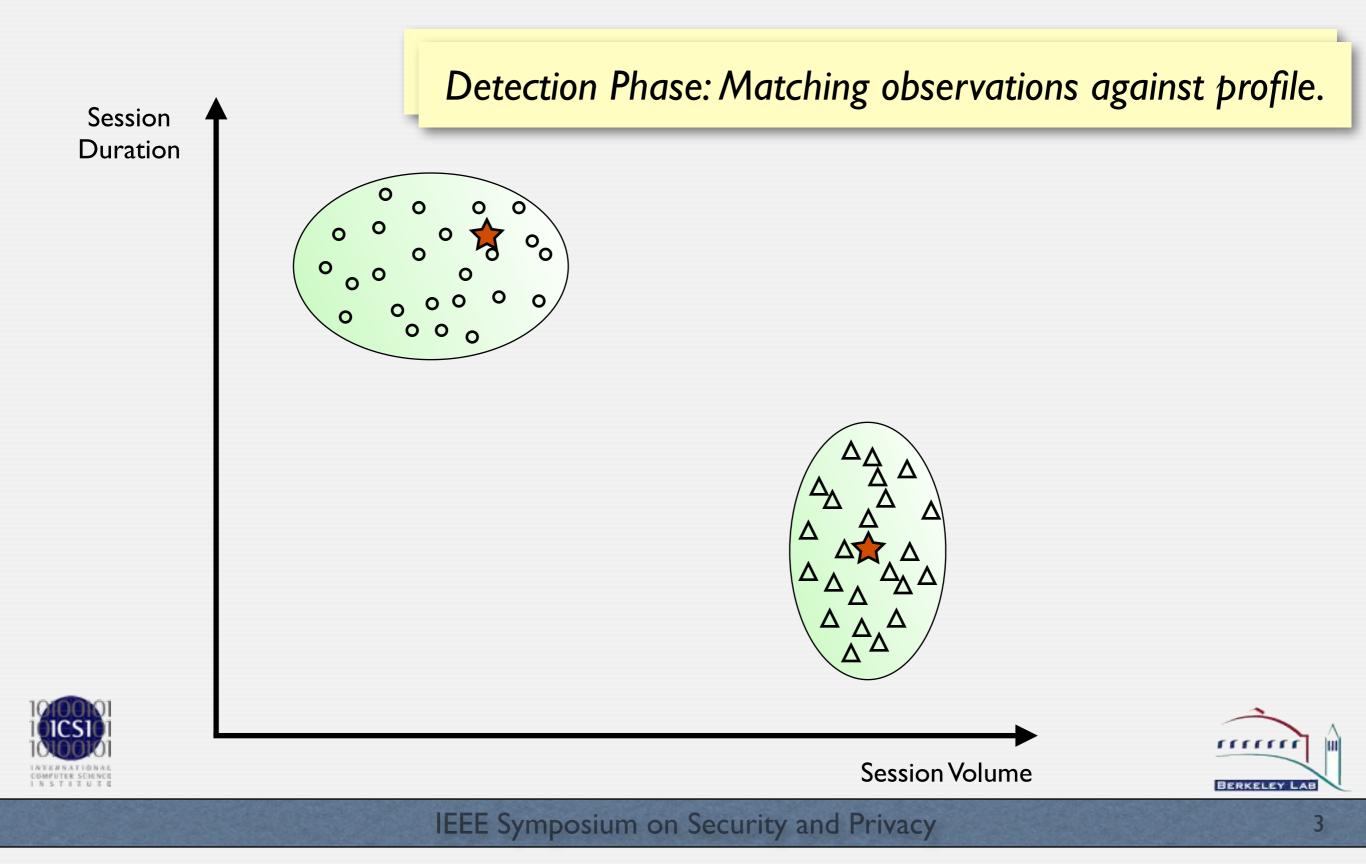


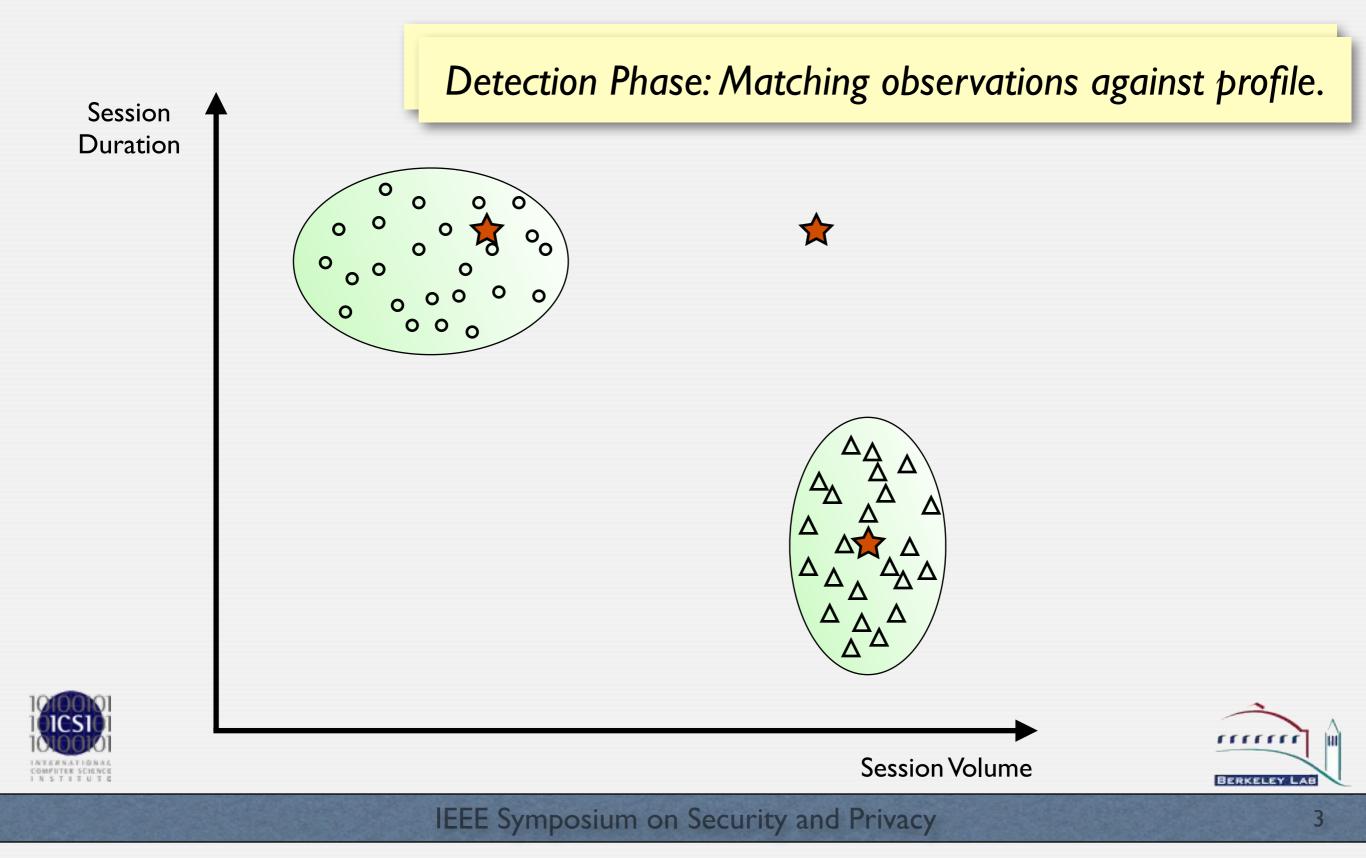


lui)









Anomaly Detection (2)

- Assumption: Attacks exhibit characteristics that are different than those of normal traffic.
- Originally introduced by Dorothy Denning in 1987.
 - IDES: Host-level system building per-user profiles of activity.
 - Login frequency, password failures, session duration, resource consumption.

Anomaly Detection (2)

Technique Used	Section	References	
Statistical Profiling	Section 7.2.1	NIDES [Anderson et al. 1994; Anderson et al. 1995;	
using Histograms		Javitz and Valdes 1991], EMERALD [Porras and	
		Neumann 1997], Yamanishi et al [2001; 2004], Ho	
		et al. [1999], Kruegel at al [2002; 2003], Mahoney	
		et al [2002; 2003; 2003; 2007], Sargor [1998]	
Parametric Statisti-	Section 7.1	Gwadera et al $[2005b; 2004]$, Ye and Chen $[2001]$	
cal Modeling			
Non-parametric Sta-	Section 7.2.2	Chow and Yeung [2002]	
tistical Modeling			
Bayesian Networks	Section 4.2	Siaterlis and Maglaris [2004], Sebyala et al. [2002],	
AT 1 AT 1		Valdes and Skinner [2000], Bronstein et al. [2001]	
Neural Networks	Section 4.1	HIDE [Zhang et al. 2001], NSOM [Labib and Ve-	
		muri 2002], Smith et al. [2002], Hawkins et al.	
		[2002], Kruegel et al. [2003], Manikopoulos and Pa-	
	G 4: 4.9	pavassiliou [2002], Ramadas et al. [2003]	
Support Vector Ma-	Section 4.3	Eskin et al. $[2002]$	
chines Bula based Systems	Section 4.4	ADAM [Parbara at al. 2001a; Parbara at al. 2002;	
Rule-based Systems	Section 4.4	ADAM [Barbara et al. 2001a; Barbara et al. 2003; Barbara et al. 2001b], Fan et al. [2001], Helmer	
		et al. [1998], Qin and Hwang [2004], Salvador and	
		Chan $[2003]$, Otey et al. $[2003]$	
Clustering Based	Section 6	ADMIT [Sequeira and Zaki 2002], Eskin et al.	
Clustering Dabed		[2002], Wu and Zhang [2003], Otey et al. [2003]	
Nearest Neighbor	Section 5	MINDS [Ertoz et al. 2004; Chandola et al. 2006],	
based		Eskin et al. [2002]	
Spectral	Section 9	Shyu et al. [2003], Lakhina et al. [2005], Thottan	
-		and Ji [2003],Sun et al. [2007]	
Information Theo-	Section 8	Lee and Xiang [2001],Noble and Cook [2003]	
retic			

Source: Chandola et al. 2009

Anomaly Detection (2)

Technique Used	Section	References	Features used
Statistical Profiling	Section 7.2.1	NIDES [Anderson et al. 1994; Anderson et al. 1995;	packet sizes
using Histograms		Javitz and Valdes 1991], EMERALD [Porras and	IP addresses
		Neumann 1997], Yamanishi et al [2001; 2004], Ho	ports
		et al. [1999], Kruegel at al [2002; 2003], Mahoney et al [2002; 2003; 2003; 2007], Sargor [1998]	header fields
Parametric Statisti-	Section 7.1	Gwadera et al [2005b; 2004], Ye and Chen [2001]	
cal Modeling			timestamps
Non-parametric Sta-	Section 7.2.2	Chow and Yeung [2002]	inter-arrival times
tistical Modeling			session size
Bayesian Networks	Section 4.2	Siaterlis and Maglaris [2004], Sebyala et al. [2002],	session duration
		Valdes and Skinner [2000], Bronstein et al. [2001]	session volume
Neural Networks	Section 4.1	HIDE [Zhang et al. 2001], NSOM [Labib and Ve-	
		muri 2002], Smith et al. [2002], Hawkins et al. [2002], Kruegel et al. [2003], Manikopoulos and Pa-	payload frequenci
		pavassiliou [2002], Ramadas et al. [2003]	payload tokens
Support Vector Ma-	Section 4.3	Eskin et al. [2002]	payload pattern
chines			
Rule-based Systems	Section 4.4	ADAM [Barbara et al. 2001a; Barbara et al. 2003;	
		Barbara et al. 2001b], Fan et al. [2001], Helmer	
		et al. [1998], Qin and Hwang [2004], Salvador and	
Clustering Deced	Section 6	Chan [2003], Otey et al. [2003]	
Clustering Based	Section 6	ADMIT [Sequeira and Zaki 2002], Eskin et al. [2002], Wu and Zhang [2003], Otey et al. [2003]	
Nearest Neighbor	Section 5	MINDS [Ertoz et al. 2004; Chandola et al. 2006],	
based		Eskin et al. [2002]	
Spectral	Section 9	Shyu et al. [2003], Lakhina et al. [2005], Thottan	
		and Ji [2003],Sun et al. [2007]	
Information Theo-	Section 8	Lee and Xiang [2001],Noble and Cook [2003]	
retic			

Source: Chandola et al. 2009

S cies

- Anomaly detection is extremely appealing.
 - Promises to find *novel* attacks without anticipating specifics.
 - It's *plausible*: machine learning works so well in other domains.

- Anomaly detection is extremely appealing.
 - Promises to find *novel* attacks without anticipating specifics.
 - It's plausible: machine learning works so well in other domains.
- But guess what's used in operation? Snort.
 - We find hardly any machine learning NIDS in real-world deployments.

- Anomaly detection is extremely appealing.
 - Promises to find *novel* attacks without anticipating specifics.
 - It's plausible: machine learning works so well in other domains.
- But guess what's used in operation? Snort.
 - We find hardly any machine learning NIDS in real-world deployments.
- Could using machine learning be harder than it appears?

Why is Anomaly Detection Hard?

The intrusion detection domain faces challenges that make it fundamentally different from other fields.

Why is Anomaly Detection Hard?

The intrusion detection domain faces challenges that make it fundamentally different from other fields.

Outlier detection and the high costs of errors

How do we find the opposite of normal?

Interpretation of results

What does that anomaly mean?

Evaluation

How do we make sure it actually works?

Training data

What do we train our system with?

Evasion risk

Can the attacker mislead our system?

Why is Anomaly Detection Hard?

The intrusion detection domain faces challenges that make it fundamentally different from other fields.

Outlier detection and the high costs of errors

How do we find the opposite of normal?

Interpretation of results

What does that anomaly mean?

Evaluation

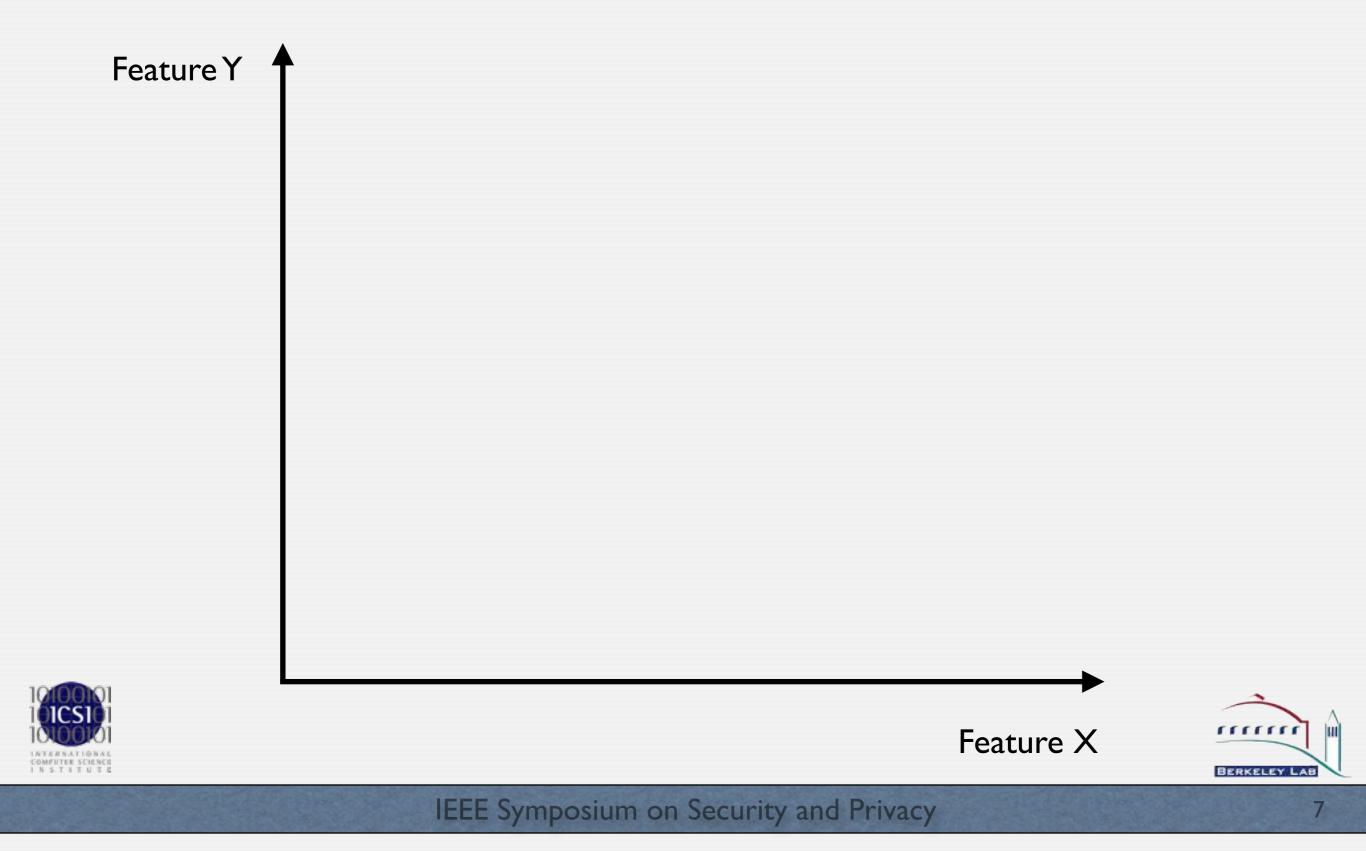
How do we make sure it actually works?

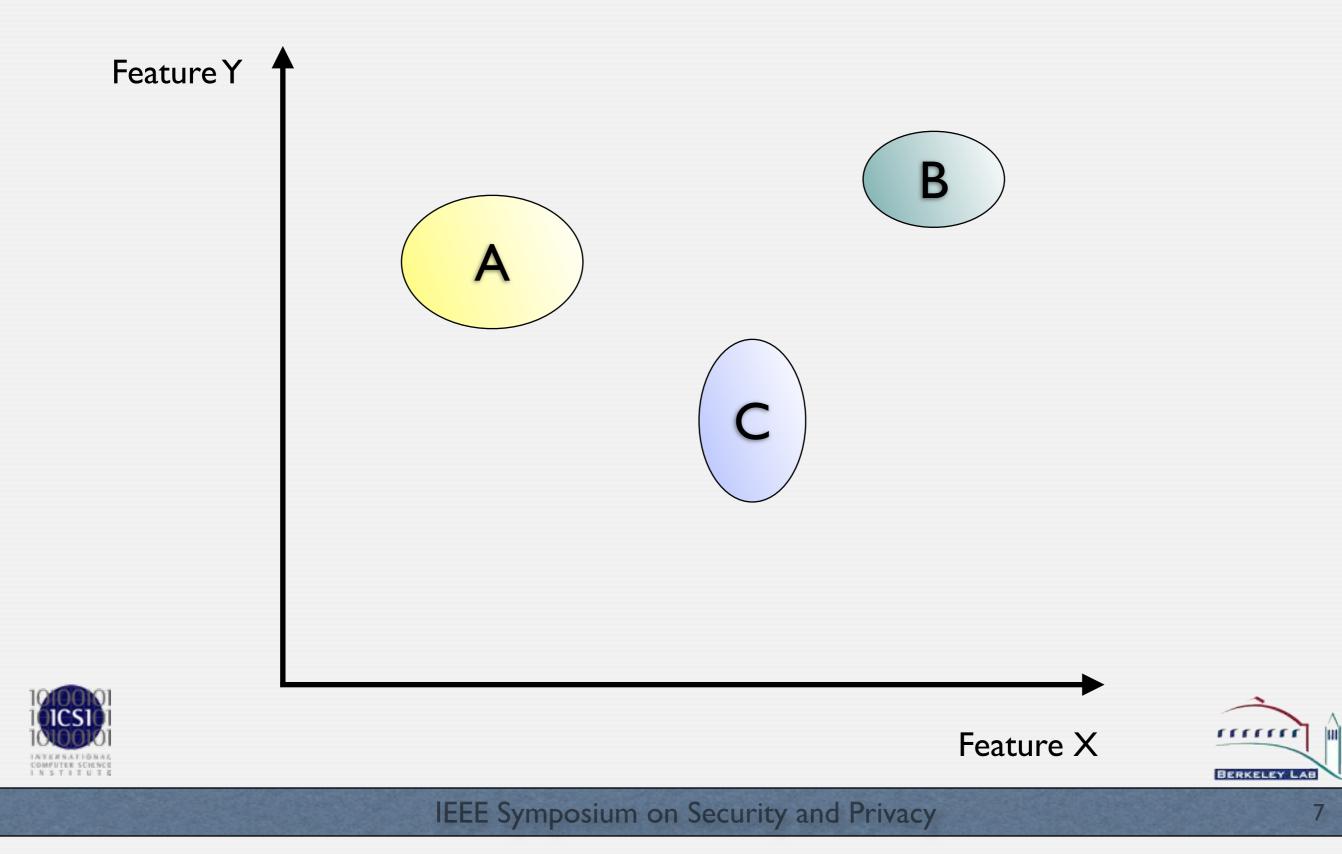
Training data

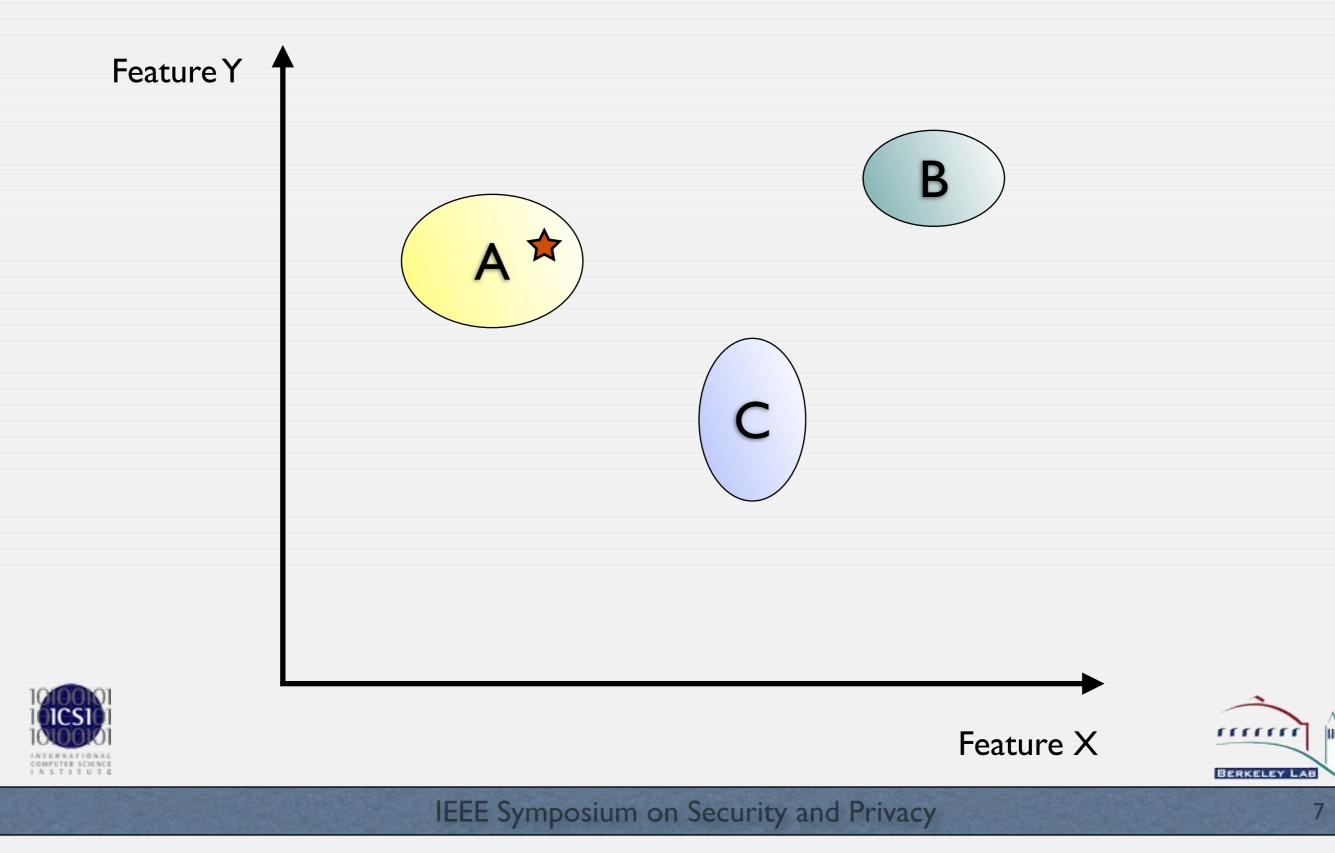
What do we train our system with?

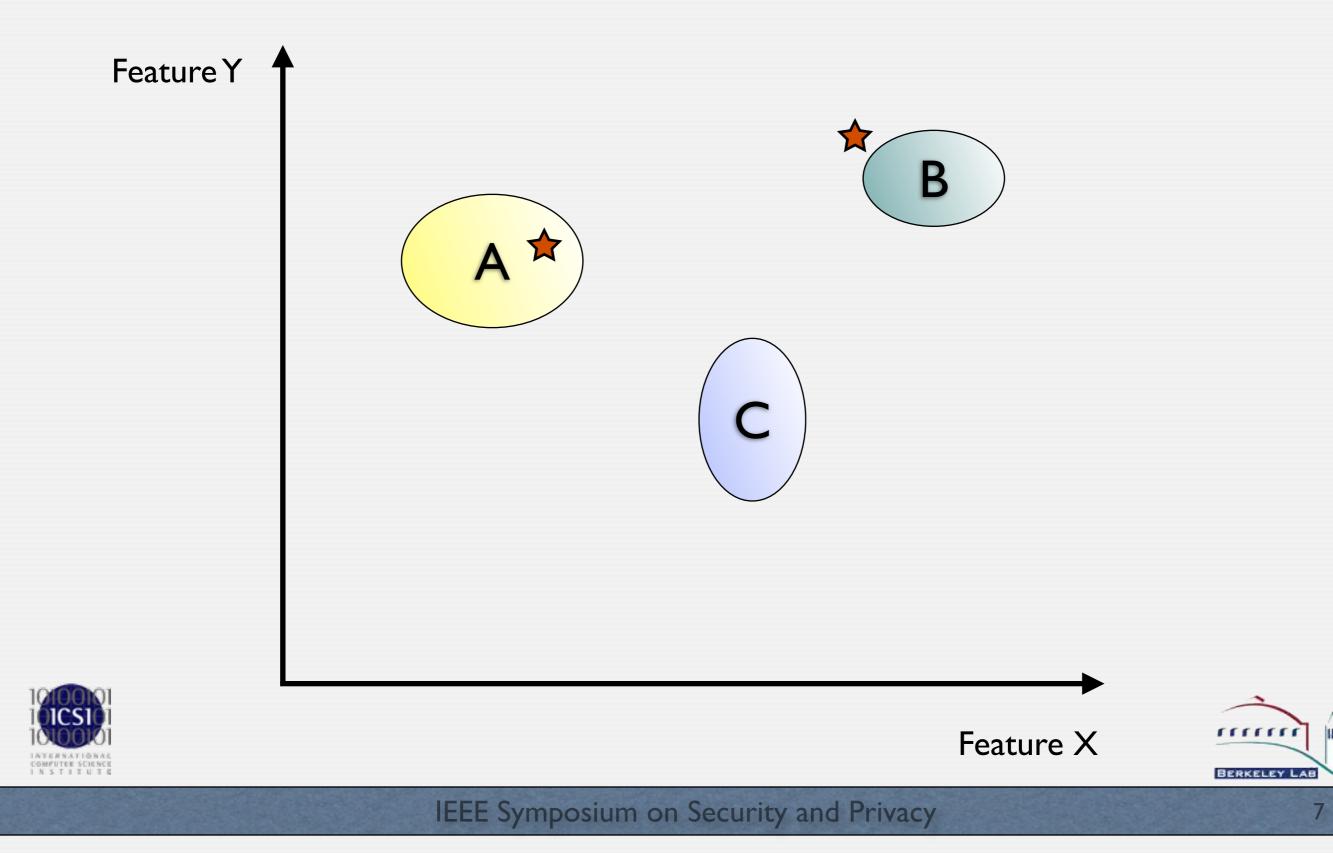
Evasion risk

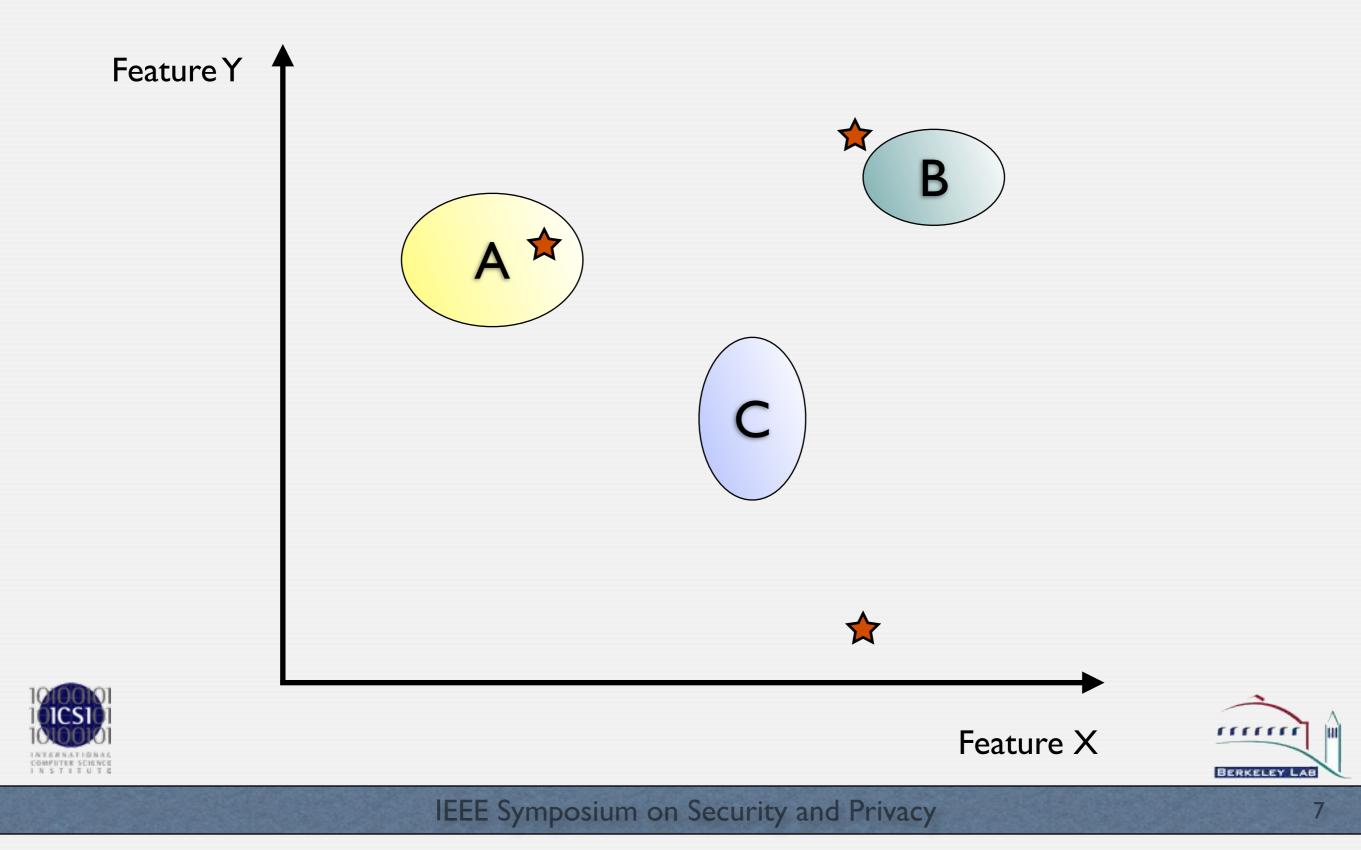
Can the attacker mislead our system?

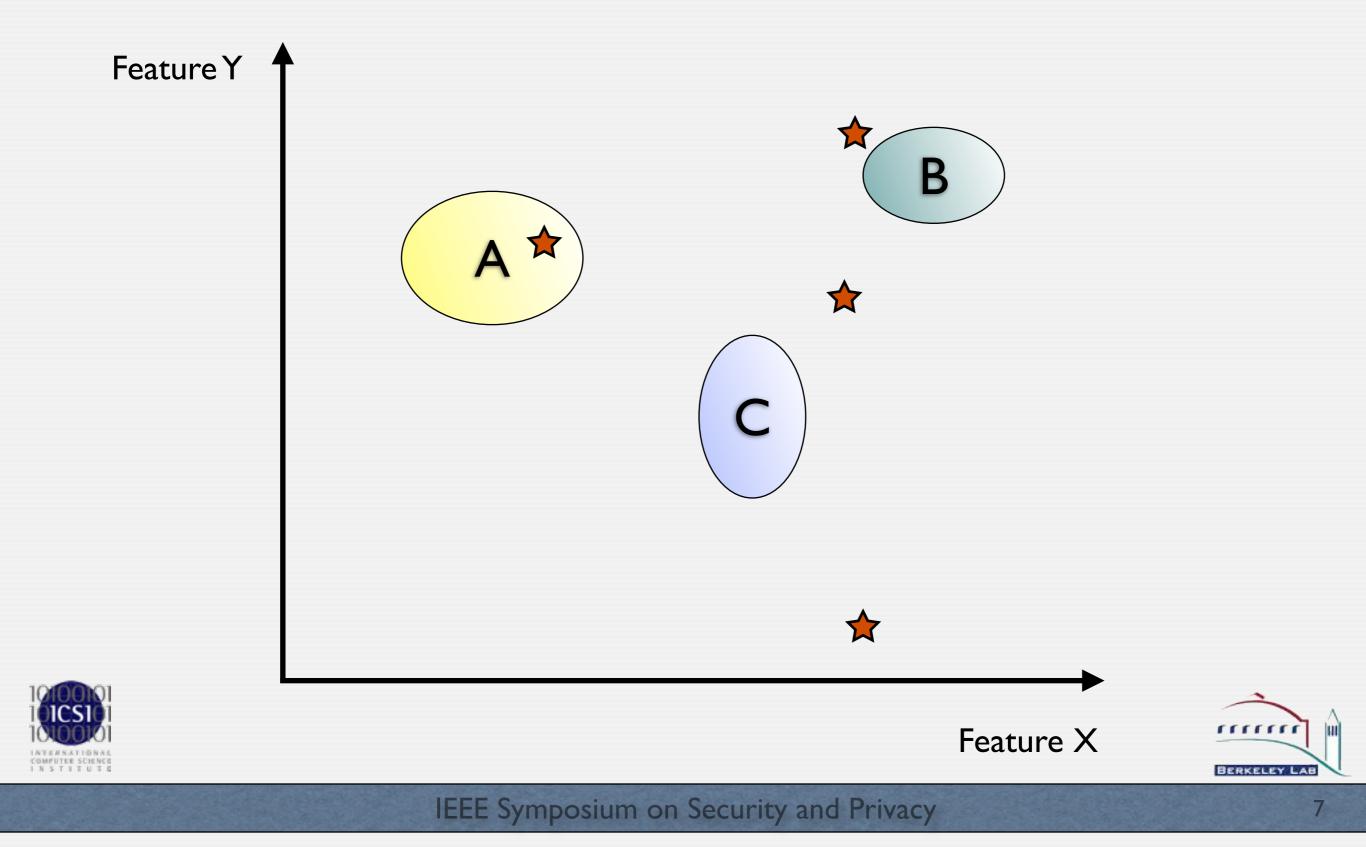


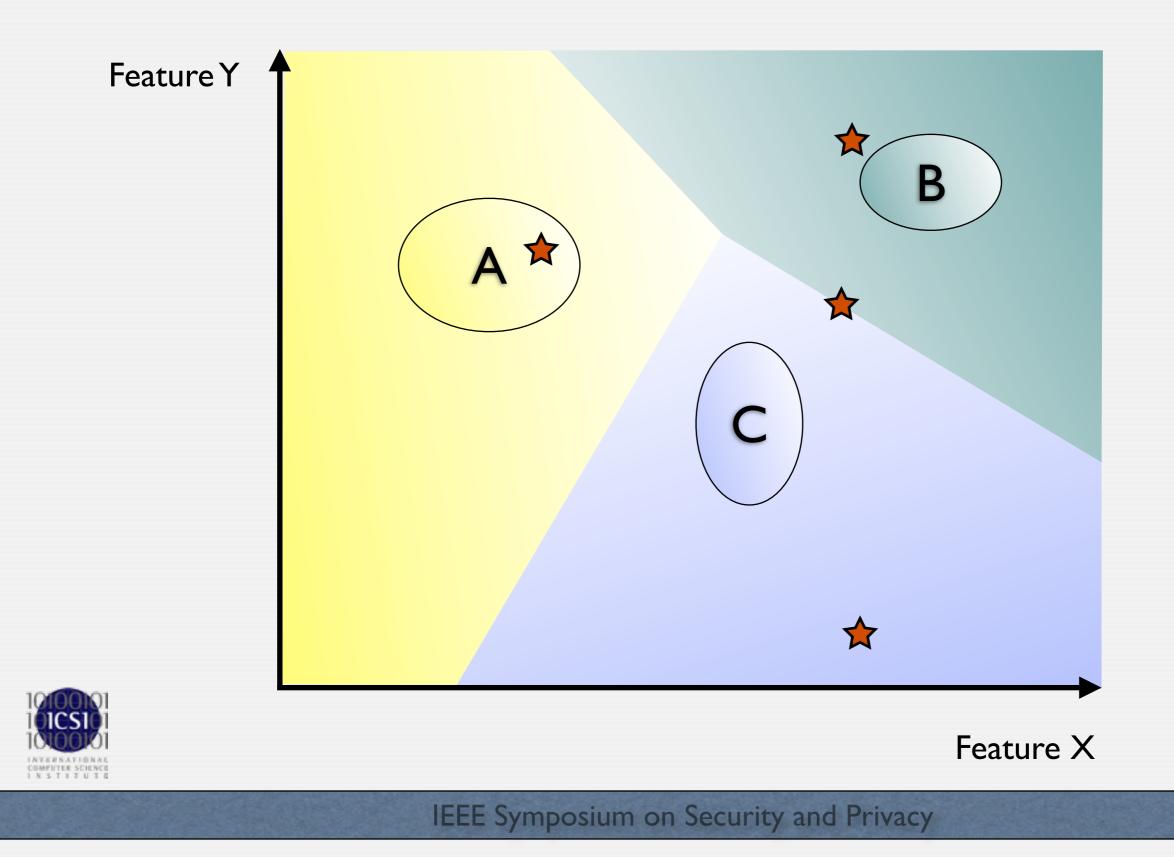








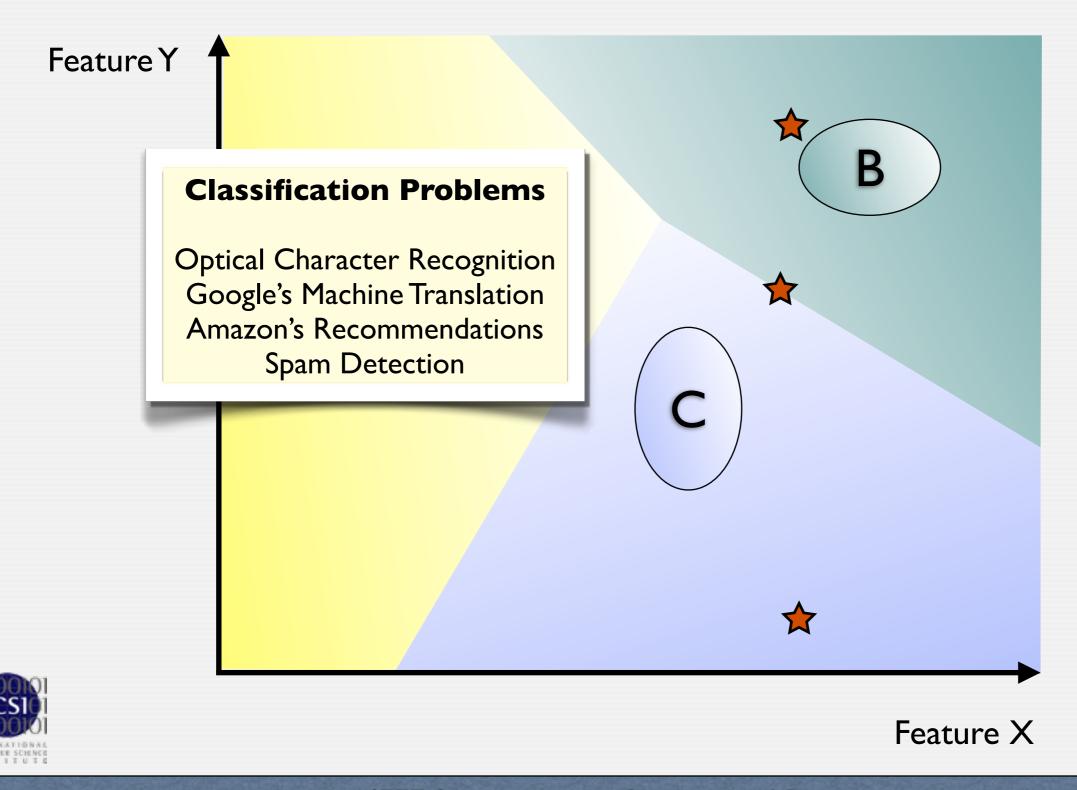




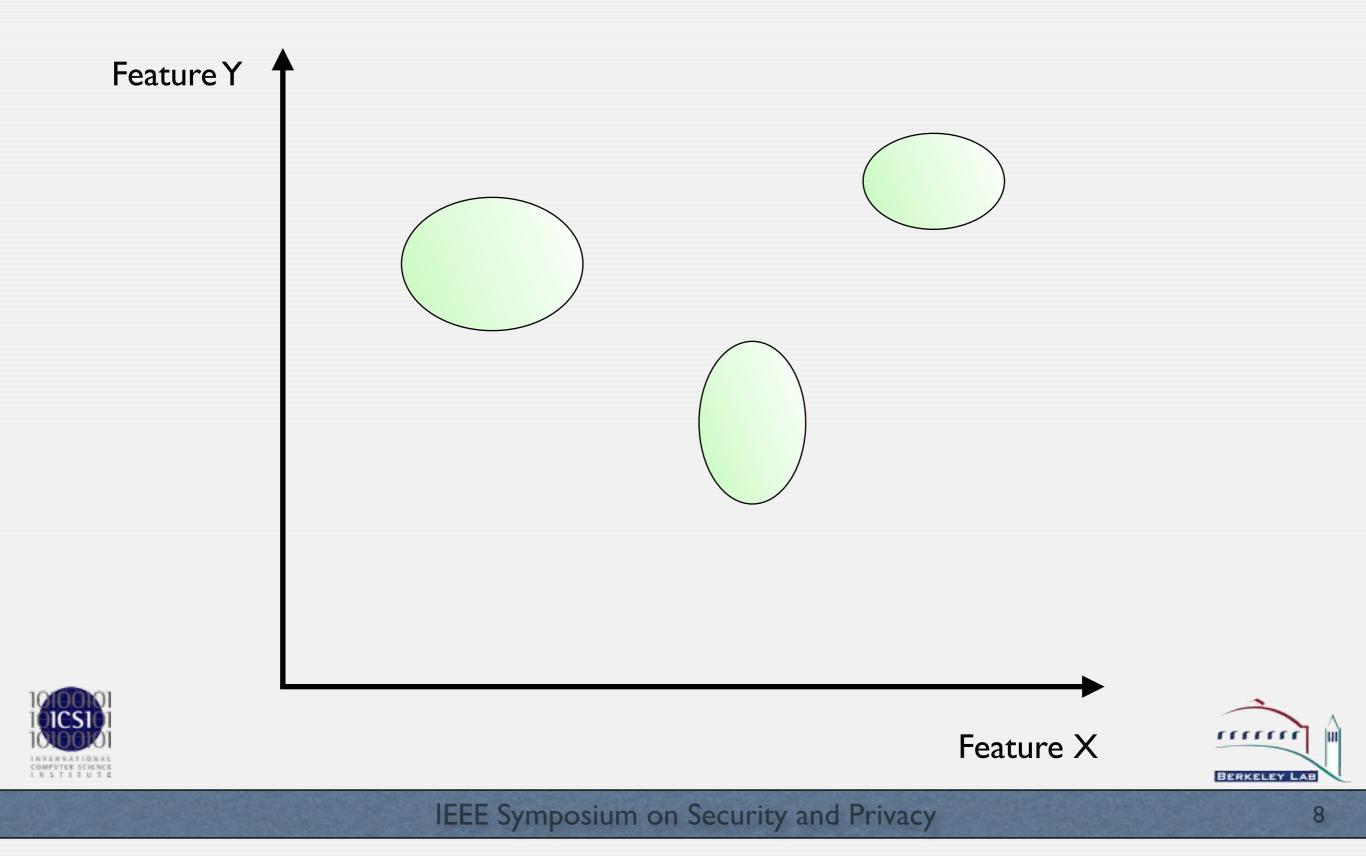
rrrrr

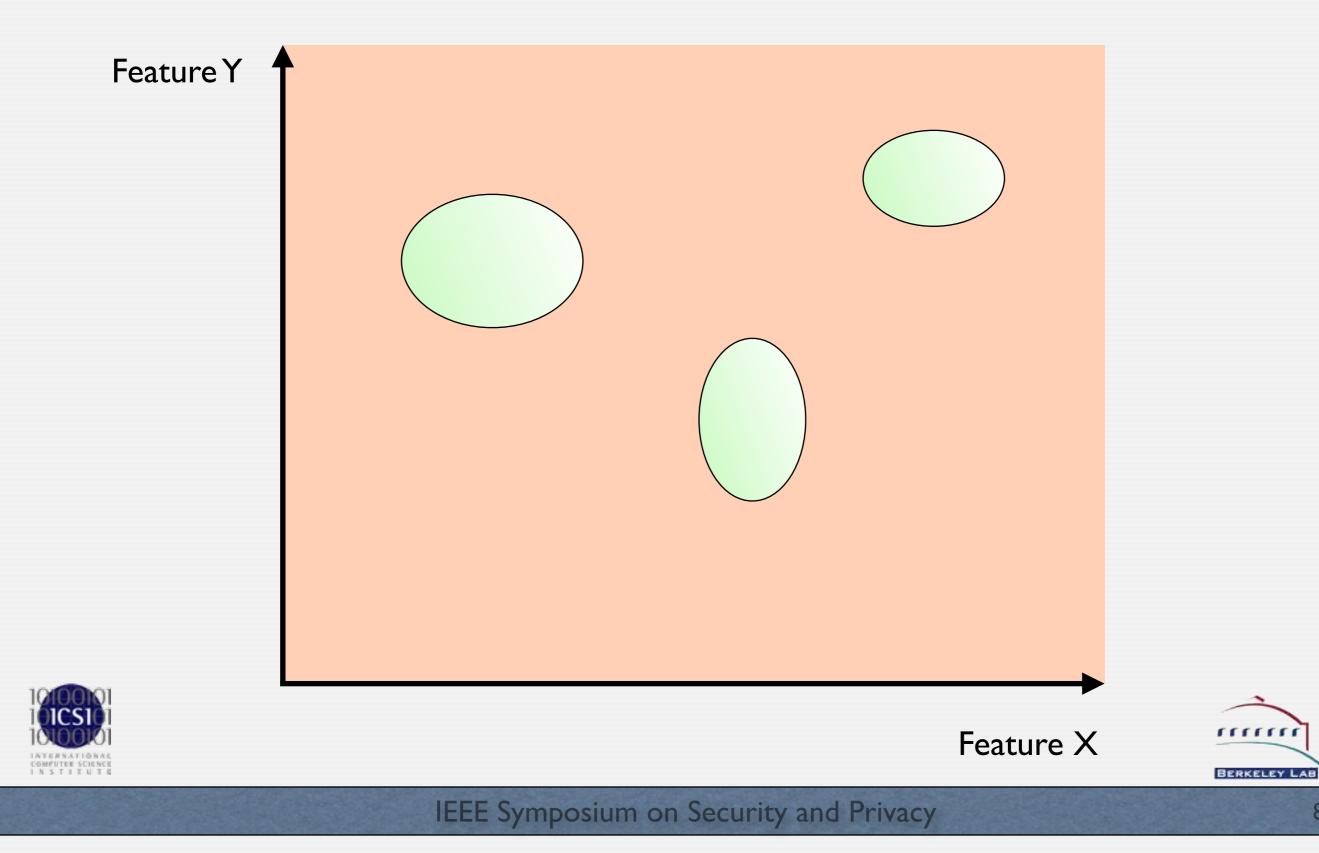
BERKELEY LAB

7

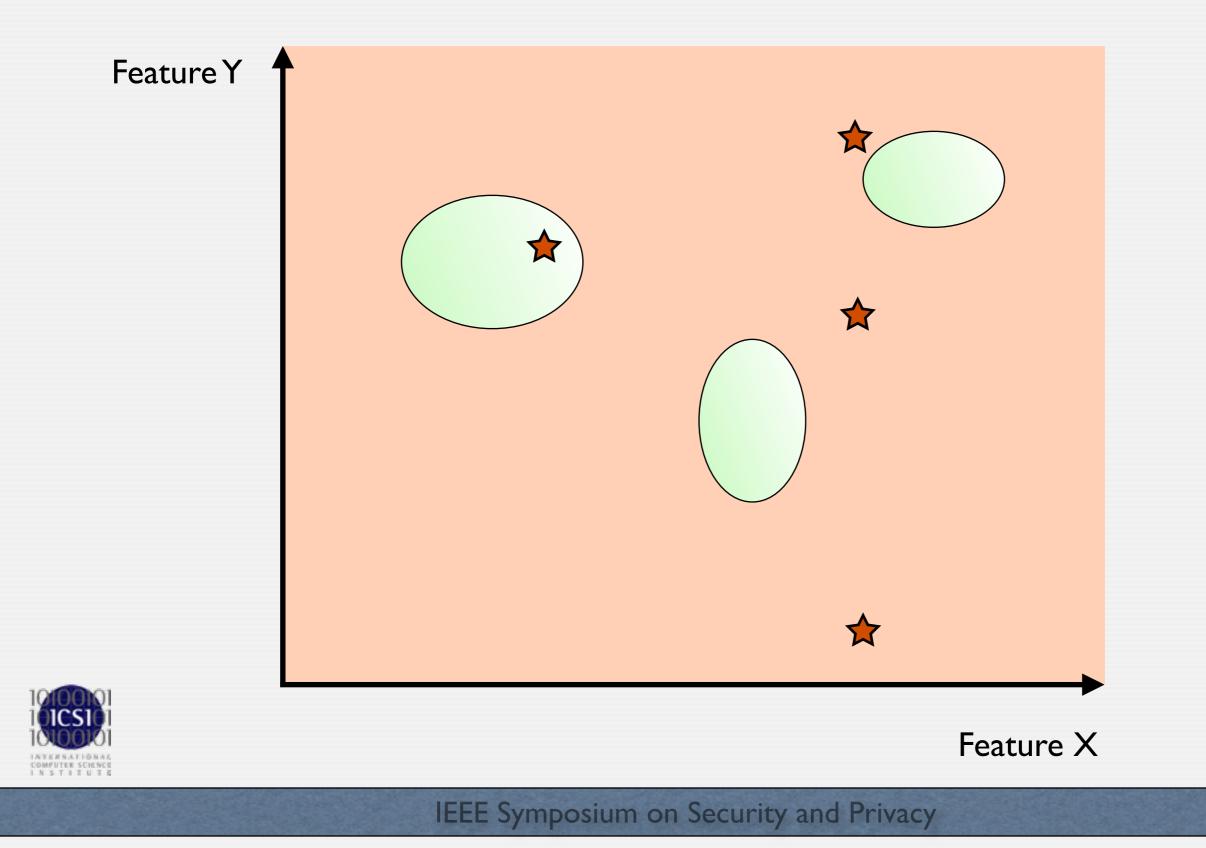


7





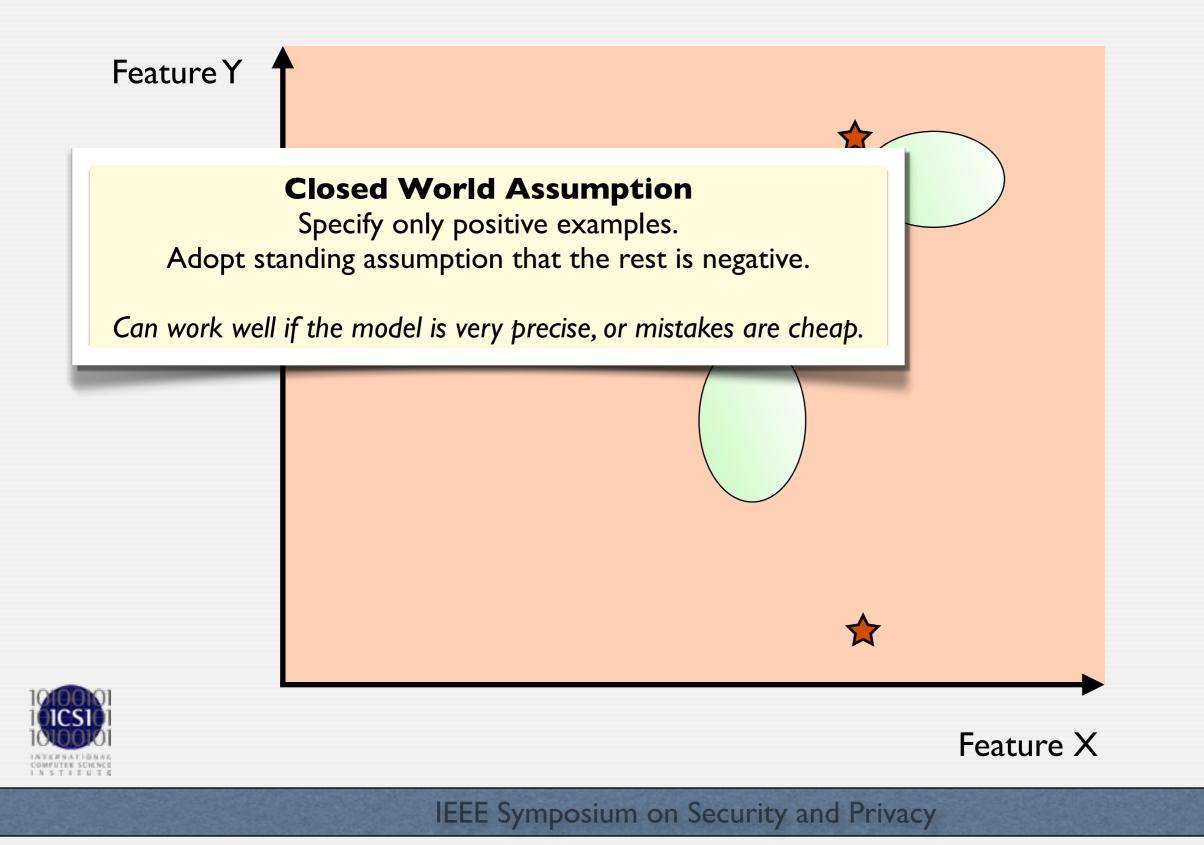
lui)



lui)

mmm

BERKELEY LAB

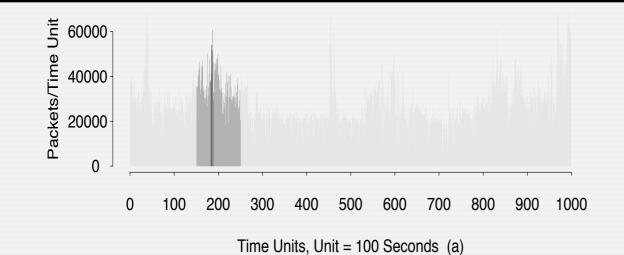


rrrrr

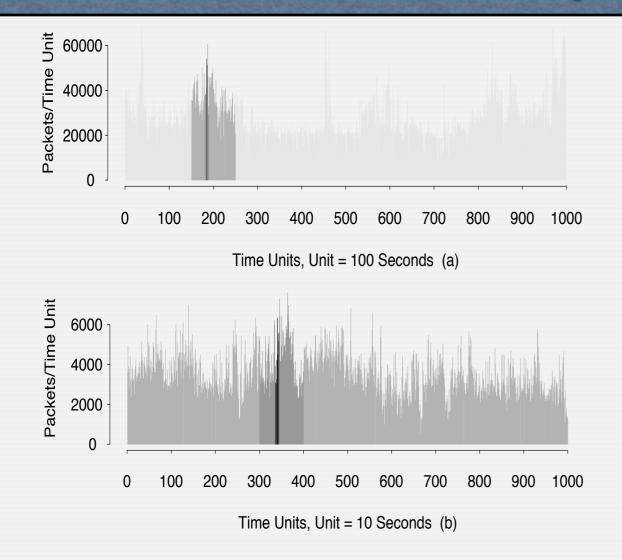
BERKELEY LAB

What is Normal?

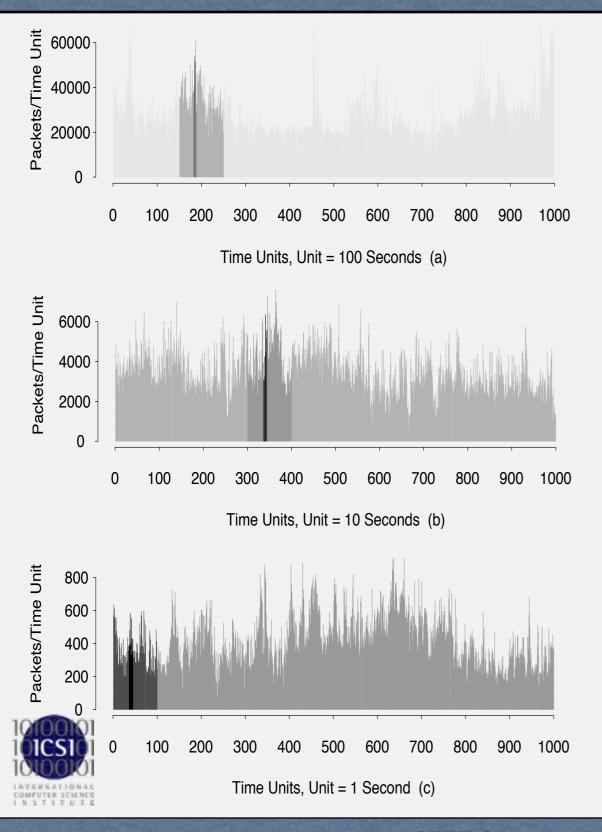
- Finding a stable notion of normal is hard for networks.
- Network traffic is composed of *many* individual sessions.
 - Leads to enormous variety and unpredictable behavior.
 - Observable on all layers of the protocol stack.

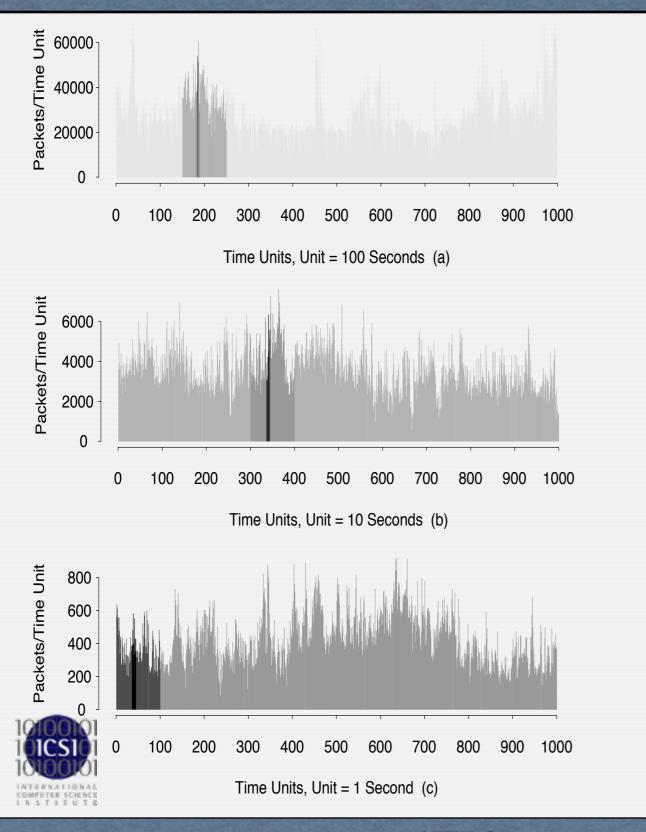


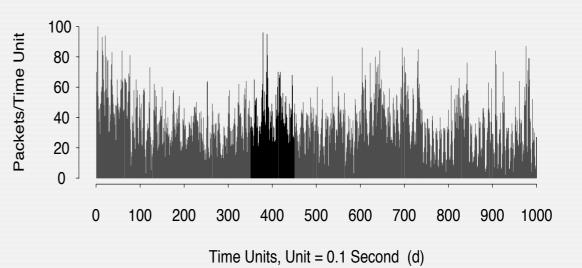
Source: LeLand et al. 1995



Source: LeLand et al. 1995







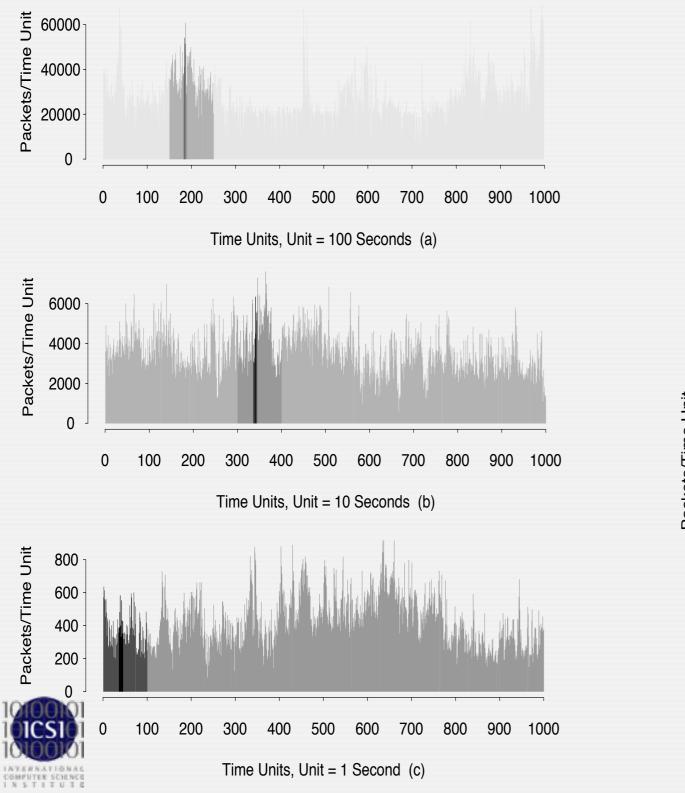
Source: LeLand et al. 1995

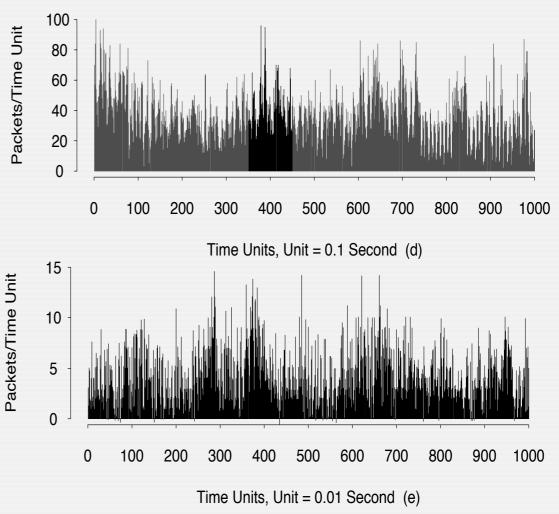
rrrr

IEEE Symposium on Security and Privacy

ш

Self-Similarity of Ethernet Traffic





Source: LeLand et al. 1995

One Day of Crud at ICSI

Postel's Law: Be strict in what you send and liberal in what you accept ...

H

One Day of Crud at ICSI

Postel's Law: Be strict in what you send and liberal in what you accept ...

active- connection-reuse	DNS-label-len-gt- pkt	HTTP-chunked- multipart	possible-split- routing
bad-Ident-reply	DNS-label-too- long	HTTP-version- mismatch	SYN-after-close
bad-RPC	DNS-RR-length- mismatch	illegal-%-at-end- of-URI	SYN-after-reset
bad-SYN-ack	DNS-RR-unknown- type	inappropriate-FIN	SYN-inside- connection
bad-TCP-header- len	DNS-truncated- answer	IRC-invalid-line	SYN-seq-jump
base64-illegal- encoding	DNS-len-lt-hdr- len	line-terminated- with-single-CR	truncated-NTP
connection- originator-SYN-ack	DNS-truncated-RR- rdlength	malformed-SSH- identification	unescaped-%-in- URI
data-after-reset	double-%-in-URI	no-login-prompt	unescaped- special-URI-char
data-before- established	excess-RPC	NUL-in-line	unmatched-HTTP- reply
too-many-DNS- queries	FIN-advanced- last-seq	POP3-server-sending- client-commands	window-recision
DNS-label- forward-compress-	fragment-with-DF		I 55K in total!



H

What is Normal?

- Finding a stable notion of normal is hard for networks.
- Network traffic is composed of *many* individual sessions.
 - Leads to enormous variety and unpredictable behavior.
 - Observable on all layers of the protocol stack.
- Violates an implicit assumption: Outliers are attacks!
- Ignoring this leads to a semantic gap
 - Disconnect between what the system reports and what the operator wants.
 - Root cause for the common complaint of "too many false positives".
- Each mistake costs scarce analyst time.

Mistakes in Other Domains

OCR	Spell Checker	
Image Analysis	Human Eye	
Translation	Low Expectation	
Collaborative Filtering	Not much impact.	

Mistakes in Other Domains

OCR	Spell Checker	
Image Analysis	Human Eye	
Translation	Low Expectation	
Collaborative Filtering	Not much impact.	

" [Recommendations are] guess work. Our error rate will always be high." - Greg Linden (Amazon)

Building a Good Anomaly Detector

- Limit the detector's scope.
 - What concrete attack is the system to find?
 - Define a problem for which machine learning makes less mistakes.
- Gain insight into capabilities and limitations.
 - What exactly does it detect and why? What not and why not?
 - What are the features *conceptually* able to capture?
 - When exactly does it break?
 - Acknowledge shortcomings.
 - Examine false and true positives/negatives.

Image Analysis with Neural Networks

Tank

Image Analysis with Neural Networks

Tank

No Tank

What Can we Do?

- Limit the detector's scope.
 - What concrete attack is the system to find?
 - Define a problem for which machine learning makes less mistakes.
- Gain insight into capabilities and limitations.
 - What exactly does it detect and why? What not and why not?
 - What are the features conceptually able to capture?
 - When exactly does it break?
 - Acknowledge shortcomings.
 - Examine false and true positives/negatives.
- Assume the perspective of a network operator.
 - How does the detector help with operations?
 - Gold standard: work *with* operators. If they deem it useful, you got it right.

rrrrrr

What Can we Do?

- Limit the detector's scope.
 - What concrete attack is the system to find?
 - Define a problem for which machine learning makes less mistakes.
- Gain insight into capabilities and limitations.

Once you have done all this ...

... you might notice that you now know enough about the activity you're looking for that you don't need any machine learning.

- Assume the perspective of a network operator.
 - How does the detector help with operations?
 - Gold standard: work *with* operators. If they deem it useful, you got it right.

rrrrrr

Why is Anomaly Detection Hard?

The intrusion detection domain faces challenges that make it fundamentally different from other fields.

- Outlier detection and the high costs of errors
- Interpretation of results
- Evaluation
- Training data
- Evasion risk

Conclusion

- Machine learning for intrusion detection is challenging.
 - Reasonable and possible, but needs care.
 - Consider fundamental differences to other domains.
 - There is some good anomaly detection work out there.
- If you do anomaly detection, understand and explain.
- If you are given an anomaly detector, ask questions.

Conclusion

- Machine learning for intrusion detection is challenging.
 - Reasonable and possible, but needs care.
 - Consider fundamental differences to other domains.
 - There is some good anomaly detection work out there.
- If you do anomaly detection, understand and explain.
- If you are given an anomaly detector, ask questions.

"Open questions:

[...] Soundness of Approach: Does the approach actually detect intrusions? Is it possible to distinguish anomalies related to intrusions from those related to other factors?" -Denning, 1987

Thanks for your attention.

Robin Sommer International Computer Science Institute, & Lawrence Berkeley National Laboratory

robin@icsi.berkeley.edu
http://www.icir.org

Thanks for your attention.

Robin Sommer International Computer Science Institute, & Lawrence Berkeley National Laboratory

robin@icsi.berkeley.edu
http://www.icir.org

