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• Assumption:  Attacks exhibit characteristics that are 
different than those of normal traffic.

• Originally introduced by Dorothy Denning in1987.
• IDES: Host-level system building per-user profiles of activity.
• Login frequency, password failures, session duration, resource consumption.
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14 · Chandola, Banerjee and Kumar

Technique Used Section References
Statistical Profiling
using Histograms

Section 7.2.1 NIDES [Anderson et al. 1994; Anderson et al. 1995;
Javitz and Valdes 1991], EMERALD [Porras and
Neumann 1997], Yamanishi et al [2001; 2004], Ho
et al. [1999], Kruegel at al [2002; 2003], Mahoney
et al [2002; 2003; 2003; 2007], Sargor [1998]

Parametric Statisti-
cal Modeling

Section 7.1 Gwadera et al [2005b; 2004], Ye and Chen [2001]

Non-parametric Sta-
tistical Modeling

Section 7.2.2 Chow and Yeung [2002]

Bayesian Networks Section 4.2 Siaterlis and Maglaris [2004], Sebyala et al. [2002],
Valdes and Skinner [2000], Bronstein et al. [2001]

Neural Networks Section 4.1 HIDE [Zhang et al. 2001], NSOM [Labib and Ve-
muri 2002], Smith et al. [2002], Hawkins et al.
[2002], Kruegel et al. [2003], Manikopoulos and Pa-
pavassiliou [2002], Ramadas et al. [2003]

Support Vector Ma-
chines

Section 4.3 Eskin et al. [2002]

Rule-based Systems Section 4.4 ADAM [Barbara et al. 2001a; Barbara et al. 2003;
Barbara et al. 2001b], Fan et al. [2001], Helmer
et al. [1998], Qin and Hwang [2004], Salvador and
Chan [2003], Otey et al. [2003]

Clustering Based Section 6 ADMIT [Sequeira and Zaki 2002], Eskin et al.
[2002], Wu and Zhang [2003], Otey et al. [2003]

Nearest Neighbor
based

Section 5 MINDS [Ertoz et al. 2004; Chandola et al. 2006],
Eskin et al. [2002]

Spectral Section 9 Shyu et al. [2003], Lakhina et al. [2005], Thottan
and Ji [2003],Sun et al. [2007]

Information Theo-
retic

Section 8 Lee and Xiang [2001],Noble and Cook [2003]

Table III. Examples of anomaly detection techniques used for network intrusion detection.

Technique Used Section References
Neural Networks Section 4.1 CARDWATCH [Aleskerov et al. 1997], Ghosh and

Reilly [1994],Brause et al. [1999],Dorronsoro et al.
[1997]

Rule-based Systems Section 4.4 Brause et al. [1999]
Clustering Section 6 Bolton and Hand [1999]

Table IV. Examples of anomaly detection techniques used for credit card fraud detection.

detection techniques is to maintain a usage profile for each customer and monitor
the profiles to detect any deviations. Some of the specific applications of fraud
detection are discussed below.

3.2.1 Credit Card Fraud Detection. In this domain, anomaly detection tech-
niques are applied to detect fraudulent credit card applications or fraudulent credit
card usage (associated with credit card thefts). Detecting fraudulent credit card
applications is similar to detecting insurance fraud [Ghosh and Reilly 1994].
To Appear in ACM Computing Surveys, 09 2009.

Source: Chandola et al. 2009
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Features used
packet sizes
IP addresses 
ports
header fields
timestamps
inter-arrival times
session size
session duration
session volume
payload frequencies
payload tokens
payload pattern
...
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• Anomaly detection is extremely appealing.
• Promises to find novel attacks without anticipating specifics. 
• It’s plausible: machine learning works so well in other domains. 

• But guess what’s used in operation? Snort.
• We find hardly any machine learning NIDS in real-world deployments.

• Could using machine learning be harder than it appears?
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Outlier detection and the high costs of errors
! How do we find the opposite of normal?
Interpretation of results
! What does that anomaly mean?
Evaluation!
! How do we make sure it actually works? 
Training data
! What do we train our system with?
Evasion risk
! Can the attacker mislead our system?
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Classification Problems

Optical Character Recognition
Google’s Machine Translation
Amazon’s Recommendations 

Spam Detection
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Outlier Detection
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Feature X

Feature Y

Closed World Assumption
Specify only positive examples.

Adopt standing assumption that the rest is negative.

Can work well if the model is very precise, or mistakes are cheap.
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What is Normal?

• Finding a stable notion of normal is hard for networks. 

• Network traffic is composed of many individual sessions.
• Leads to enormous variety and unpredictable behavior. 
• Observable on all layers of the protocol stack.

9
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Figure 1 (a)—(e). Pictorial "proof" of self-similarity:
Ethernet traffic (packets per time unit for the August
’89 trace) on 5 different time scales. (Different gray
levels are used to identify the same segments of traffic
on the different time scales.)

3.2 THE MATHEMATICS OF SELF-SIMILARITY
The notion of self-similarity is not merely an intuitive
description, but a precise concept captured by the following

rigorous mathematical definition. Let X = (Xt: t = 0, 1, 2, ...) be
a covariance stationary (sometimes called wide-sense
stationary) stochastic process; that is, a process with constant
mean µ = E [Xt], finite variance !2 = E [(Xt " µ)2], and an
autocorrelation function r (k) = E [(Xt " µ)(Xt + k " µ)]
/E [(Xt " µ)2] (k = 0, 1, 2, ...) that depends only on k. In
particular, we assume that X has an autocorrelation function of
the form

r (k) # a 1k "$ , as k %&, (3.2.1)

where 0 < $ < 1 (here and below, a 1, a 2, . . . denote finite
positive constants). For each m = 1, 2, 3, . . . , let
X (m) = (Xk

(m) : k = 1, 2, 3, ...) denote a new time series obtained
by averaging the original series X over non-overlapping blocks
of size m. That is, for each m = 1, 2, 3, . . . , X (m) is given by
Xk
(m) = 1/m (Xkm " m + 1 + . . . + Xkm), (k ' 1). Note that for

each m, the aggregated time series X (m) defines a covariance
stationary process; let r (m) denote the corresponding
autocorrelation function.

The process X is called exactly (second-order) self-similar with
self-similarity parameter H = 1 " $/2 if the corresponding
aggregated processes X (m) have the same correlation structure as
X, i.e., r (m) (k) = r (k), for all m = 1, 2, . . . ( k = 1, 2, 3, . . . ).
In other words, X is exactly self-similar if the aggregated
processes X (m) are indistinguishable from X—at least with
respect to their second order statistical properties. An example
of an exactly self-similar process with self-similarity parameter
H is fractional Gaussian noise (FGN) with parameter
1/2 < H < 1, introduced by Mandelbrot and Van Ness (1968).

A covariance stationary process X is called asymptotically
(second-order) self-similar with self-similarity parameter
H = 1 " $/2 if r (m) (k) agrees asymptotically (i.e., for large m and
large k) with the correlation structure r (k) of X given by (3.2.1).
The fractional autoregressive integrated moving-average
processes (fractional ARIMA(p,d,q) processes) with
0 < d < 1/2 are examples of asymptotically second-order self-
similar processes with self-similarity parameter d + 1/2. (For
more details, see Granger and Joyeux (1980), and Hosking
(1981).)

Intuitively, the most striking feature of (exactly or
asymptotically) self-similar processes is that their aggregated
processes X (m) possess a nondegenerate correlation structure as
m %&. This behavior is precisely the intuition illustrated with
the sequence of plots in Figure 1; if the original time series X
represents the number of Ethernet packets per 10 milliseconds
(plot (e)), then plots (a) to (d) depict segments of the aggregated
time series X (10000) , X (1000) , X (100) , and X (10) , respectively. All of
the plots look "similar", suggesting a nearly identical
autocorrelation function for all of the aggregated processes.

Mathematically, self-similarity manifests itself in a number of
equivalent ways (see Cox (1984)): (i) the variance of the sample
mean decreases more slowly than the reciprocal of the sample
size (slowly decaying variances), i.e., var(X (m) ) # a 2m "$ ,
as m %&, with 0 < $ < 1; (ii) the autocorrelations decay
hyperbolically rather than exponentially fast, implying a non-
summable autocorrelation function (k

r (k) = & (long-range
dependence), i.e., r (k) satisfies relation (3.2.1); and (iii) the
spectral density f ( . ) obeys a power-law behavior near the
origin (1/f-noise), i.e., f ()) # a 3)"* , as ) % 0 , with 0 < * < 1
and * = 1 " $.

The existence of a nondegenerate correlation structure for the
aggregated processes X (m) as m %& is in stark contrast to
typical packet traffic models currently considered in the
literature, all of which have the property that their aggregated

ACM SIGCOMM –206– Computer Communication Review

Source: LeLand et al. 1995
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Figure 1 (a)—(e). Pictorial "proof" of self-similarity:
Ethernet traffic (packets per time unit for the August
’89 trace) on 5 different time scales. (Different gray
levels are used to identify the same segments of traffic
on the different time scales.)

3.2 THE MATHEMATICS OF SELF-SIMILARITY
The notion of self-similarity is not merely an intuitive
description, but a precise concept captured by the following

rigorous mathematical definition. Let X = (Xt: t = 0, 1, 2, ...) be
a covariance stationary (sometimes called wide-sense
stationary) stochastic process; that is, a process with constant
mean µ = E [Xt], finite variance !2 = E [(Xt " µ)2], and an
autocorrelation function r (k) = E [(Xt " µ)(Xt + k " µ)]
/E [(Xt " µ)2] (k = 0, 1, 2, ...) that depends only on k. In
particular, we assume that X has an autocorrelation function of
the form

r (k) # a 1k "$ , as k %&, (3.2.1)

where 0 < $ < 1 (here and below, a 1, a 2, . . . denote finite
positive constants). For each m = 1, 2, 3, . . . , let
X (m) = (Xk

(m) : k = 1, 2, 3, ...) denote a new time series obtained
by averaging the original series X over non-overlapping blocks
of size m. That is, for each m = 1, 2, 3, . . . , X (m) is given by
Xk
(m) = 1/m (Xkm " m + 1 + . . . + Xkm), (k ' 1). Note that for

each m, the aggregated time series X (m) defines a covariance
stationary process; let r (m) denote the corresponding
autocorrelation function.

The process X is called exactly (second-order) self-similar with
self-similarity parameter H = 1 " $/2 if the corresponding
aggregated processes X (m) have the same correlation structure as
X, i.e., r (m) (k) = r (k), for all m = 1, 2, . . . ( k = 1, 2, 3, . . . ).
In other words, X is exactly self-similar if the aggregated
processes X (m) are indistinguishable from X—at least with
respect to their second order statistical properties. An example
of an exactly self-similar process with self-similarity parameter
H is fractional Gaussian noise (FGN) with parameter
1/2 < H < 1, introduced by Mandelbrot and Van Ness (1968).

A covariance stationary process X is called asymptotically
(second-order) self-similar with self-similarity parameter
H = 1 " $/2 if r (m) (k) agrees asymptotically (i.e., for large m and
large k) with the correlation structure r (k) of X given by (3.2.1).
The fractional autoregressive integrated moving-average
processes (fractional ARIMA(p,d,q) processes) with
0 < d < 1/2 are examples of asymptotically second-order self-
similar processes with self-similarity parameter d + 1/2. (For
more details, see Granger and Joyeux (1980), and Hosking
(1981).)

Intuitively, the most striking feature of (exactly or
asymptotically) self-similar processes is that their aggregated
processes X (m) possess a nondegenerate correlation structure as
m %&. This behavior is precisely the intuition illustrated with
the sequence of plots in Figure 1; if the original time series X
represents the number of Ethernet packets per 10 milliseconds
(plot (e)), then plots (a) to (d) depict segments of the aggregated
time series X (10000) , X (1000) , X (100) , and X (10) , respectively. All of
the plots look "similar", suggesting a nearly identical
autocorrelation function for all of the aggregated processes.

Mathematically, self-similarity manifests itself in a number of
equivalent ways (see Cox (1984)): (i) the variance of the sample
mean decreases more slowly than the reciprocal of the sample
size (slowly decaying variances), i.e., var(X (m) ) # a 2m "$ ,
as m %&, with 0 < $ < 1; (ii) the autocorrelations decay
hyperbolically rather than exponentially fast, implying a non-
summable autocorrelation function (k

r (k) = & (long-range
dependence), i.e., r (k) satisfies relation (3.2.1); and (iii) the
spectral density f ( . ) obeys a power-law behavior near the
origin (1/f-noise), i.e., f ()) # a 3)"* , as ) % 0 , with 0 < * < 1
and * = 1 " $.

The existence of a nondegenerate correlation structure for the
aggregated processes X (m) as m %& is in stark contrast to
typical packet traffic models currently considered in the
literature, all of which have the property that their aggregated
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Figure 1 (a)—(e). Pictorial "proof" of self-similarity:
Ethernet traffic (packets per time unit for the August
’89 trace) on 5 different time scales. (Different gray
levels are used to identify the same segments of traffic
on the different time scales.)

3.2 THE MATHEMATICS OF SELF-SIMILARITY
The notion of self-similarity is not merely an intuitive
description, but a precise concept captured by the following

rigorous mathematical definition. Let X = (Xt: t = 0, 1, 2, ...) be
a covariance stationary (sometimes called wide-sense
stationary) stochastic process; that is, a process with constant
mean µ = E [Xt], finite variance !2 = E [(Xt " µ)2], and an
autocorrelation function r (k) = E [(Xt " µ)(Xt + k " µ)]
/E [(Xt " µ)2] (k = 0, 1, 2, ...) that depends only on k. In
particular, we assume that X has an autocorrelation function of
the form

r (k) # a 1k "$ , as k %&, (3.2.1)

where 0 < $ < 1 (here and below, a 1, a 2, . . . denote finite
positive constants). For each m = 1, 2, 3, . . . , let
X (m) = (Xk

(m) : k = 1, 2, 3, ...) denote a new time series obtained
by averaging the original series X over non-overlapping blocks
of size m. That is, for each m = 1, 2, 3, . . . , X (m) is given by
Xk
(m) = 1/m (Xkm " m + 1 + . . . + Xkm), (k ' 1). Note that for

each m, the aggregated time series X (m) defines a covariance
stationary process; let r (m) denote the corresponding
autocorrelation function.

The process X is called exactly (second-order) self-similar with
self-similarity parameter H = 1 " $/2 if the corresponding
aggregated processes X (m) have the same correlation structure as
X, i.e., r (m) (k) = r (k), for all m = 1, 2, . . . ( k = 1, 2, 3, . . . ).
In other words, X is exactly self-similar if the aggregated
processes X (m) are indistinguishable from X—at least with
respect to their second order statistical properties. An example
of an exactly self-similar process with self-similarity parameter
H is fractional Gaussian noise (FGN) with parameter
1/2 < H < 1, introduced by Mandelbrot and Van Ness (1968).

A covariance stationary process X is called asymptotically
(second-order) self-similar with self-similarity parameter
H = 1 " $/2 if r (m) (k) agrees asymptotically (i.e., for large m and
large k) with the correlation structure r (k) of X given by (3.2.1).
The fractional autoregressive integrated moving-average
processes (fractional ARIMA(p,d,q) processes) with
0 < d < 1/2 are examples of asymptotically second-order self-
similar processes with self-similarity parameter d + 1/2. (For
more details, see Granger and Joyeux (1980), and Hosking
(1981).)

Intuitively, the most striking feature of (exactly or
asymptotically) self-similar processes is that their aggregated
processes X (m) possess a nondegenerate correlation structure as
m %&. This behavior is precisely the intuition illustrated with
the sequence of plots in Figure 1; if the original time series X
represents the number of Ethernet packets per 10 milliseconds
(plot (e)), then plots (a) to (d) depict segments of the aggregated
time series X (10000) , X (1000) , X (100) , and X (10) , respectively. All of
the plots look "similar", suggesting a nearly identical
autocorrelation function for all of the aggregated processes.

Mathematically, self-similarity manifests itself in a number of
equivalent ways (see Cox (1984)): (i) the variance of the sample
mean decreases more slowly than the reciprocal of the sample
size (slowly decaying variances), i.e., var(X (m) ) # a 2m "$ ,
as m %&, with 0 < $ < 1; (ii) the autocorrelations decay
hyperbolically rather than exponentially fast, implying a non-
summable autocorrelation function (k

r (k) = & (long-range
dependence), i.e., r (k) satisfies relation (3.2.1); and (iii) the
spectral density f ( . ) obeys a power-law behavior near the
origin (1/f-noise), i.e., f ()) # a 3)"* , as ) % 0 , with 0 < * < 1
and * = 1 " $.

The existence of a nondegenerate correlation structure for the
aggregated processes X (m) as m %& is in stark contrast to
typical packet traffic models currently considered in the
literature, all of which have the property that their aggregated
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Figure 1 (a)—(e). Pictorial "proof" of self-similarity:
Ethernet traffic (packets per time unit for the August
’89 trace) on 5 different time scales. (Different gray
levels are used to identify the same segments of traffic
on the different time scales.)

3.2 THE MATHEMATICS OF SELF-SIMILARITY
The notion of self-similarity is not merely an intuitive
description, but a precise concept captured by the following

rigorous mathematical definition. Let X = (Xt: t = 0, 1, 2, ...) be
a covariance stationary (sometimes called wide-sense
stationary) stochastic process; that is, a process with constant
mean µ = E [Xt], finite variance !2 = E [(Xt " µ)2], and an
autocorrelation function r (k) = E [(Xt " µ)(Xt + k " µ)]
/E [(Xt " µ)2] (k = 0, 1, 2, ...) that depends only on k. In
particular, we assume that X has an autocorrelation function of
the form

r (k) # a 1k "$ , as k %&, (3.2.1)

where 0 < $ < 1 (here and below, a 1, a 2, . . . denote finite
positive constants). For each m = 1, 2, 3, . . . , let
X (m) = (Xk

(m) : k = 1, 2, 3, ...) denote a new time series obtained
by averaging the original series X over non-overlapping blocks
of size m. That is, for each m = 1, 2, 3, . . . , X (m) is given by
Xk
(m) = 1/m (Xkm " m + 1 + . . . + Xkm), (k ' 1). Note that for

each m, the aggregated time series X (m) defines a covariance
stationary process; let r (m) denote the corresponding
autocorrelation function.

The process X is called exactly (second-order) self-similar with
self-similarity parameter H = 1 " $/2 if the corresponding
aggregated processes X (m) have the same correlation structure as
X, i.e., r (m) (k) = r (k), for all m = 1, 2, . . . ( k = 1, 2, 3, . . . ).
In other words, X is exactly self-similar if the aggregated
processes X (m) are indistinguishable from X—at least with
respect to their second order statistical properties. An example
of an exactly self-similar process with self-similarity parameter
H is fractional Gaussian noise (FGN) with parameter
1/2 < H < 1, introduced by Mandelbrot and Van Ness (1968).

A covariance stationary process X is called asymptotically
(second-order) self-similar with self-similarity parameter
H = 1 " $/2 if r (m) (k) agrees asymptotically (i.e., for large m and
large k) with the correlation structure r (k) of X given by (3.2.1).
The fractional autoregressive integrated moving-average
processes (fractional ARIMA(p,d,q) processes) with
0 < d < 1/2 are examples of asymptotically second-order self-
similar processes with self-similarity parameter d + 1/2. (For
more details, see Granger and Joyeux (1980), and Hosking
(1981).)

Intuitively, the most striking feature of (exactly or
asymptotically) self-similar processes is that their aggregated
processes X (m) possess a nondegenerate correlation structure as
m %&. This behavior is precisely the intuition illustrated with
the sequence of plots in Figure 1; if the original time series X
represents the number of Ethernet packets per 10 milliseconds
(plot (e)), then plots (a) to (d) depict segments of the aggregated
time series X (10000) , X (1000) , X (100) , and X (10) , respectively. All of
the plots look "similar", suggesting a nearly identical
autocorrelation function for all of the aggregated processes.

Mathematically, self-similarity manifests itself in a number of
equivalent ways (see Cox (1984)): (i) the variance of the sample
mean decreases more slowly than the reciprocal of the sample
size (slowly decaying variances), i.e., var(X (m) ) # a 2m "$ ,
as m %&, with 0 < $ < 1; (ii) the autocorrelations decay
hyperbolically rather than exponentially fast, implying a non-
summable autocorrelation function (k

r (k) = & (long-range
dependence), i.e., r (k) satisfies relation (3.2.1); and (iii) the
spectral density f ( . ) obeys a power-law behavior near the
origin (1/f-noise), i.e., f ()) # a 3)"* , as ) % 0 , with 0 < * < 1
and * = 1 " $.

The existence of a nondegenerate correlation structure for the
aggregated processes X (m) as m %& is in stark contrast to
typical packet traffic models currently considered in the
literature, all of which have the property that their aggregated
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Figure 1 (a)—(e). Pictorial "proof" of self-similarity:
Ethernet traffic (packets per time unit for the August
’89 trace) on 5 different time scales. (Different gray
levels are used to identify the same segments of traffic
on the different time scales.)

3.2 THE MATHEMATICS OF SELF-SIMILARITY
The notion of self-similarity is not merely an intuitive
description, but a precise concept captured by the following

rigorous mathematical definition. Let X = (Xt: t = 0, 1, 2, ...) be
a covariance stationary (sometimes called wide-sense
stationary) stochastic process; that is, a process with constant
mean µ = E [Xt], finite variance !2 = E [(Xt " µ)2], and an
autocorrelation function r (k) = E [(Xt " µ)(Xt + k " µ)]
/E [(Xt " µ)2] (k = 0, 1, 2, ...) that depends only on k. In
particular, we assume that X has an autocorrelation function of
the form

r (k) # a 1k "$ , as k %&, (3.2.1)

where 0 < $ < 1 (here and below, a 1, a 2, . . . denote finite
positive constants). For each m = 1, 2, 3, . . . , let
X (m) = (Xk

(m) : k = 1, 2, 3, ...) denote a new time series obtained
by averaging the original series X over non-overlapping blocks
of size m. That is, for each m = 1, 2, 3, . . . , X (m) is given by
Xk
(m) = 1/m (Xkm " m + 1 + . . . + Xkm), (k ' 1). Note that for

each m, the aggregated time series X (m) defines a covariance
stationary process; let r (m) denote the corresponding
autocorrelation function.

The process X is called exactly (second-order) self-similar with
self-similarity parameter H = 1 " $/2 if the corresponding
aggregated processes X (m) have the same correlation structure as
X, i.e., r (m) (k) = r (k), for all m = 1, 2, . . . ( k = 1, 2, 3, . . . ).
In other words, X is exactly self-similar if the aggregated
processes X (m) are indistinguishable from X—at least with
respect to their second order statistical properties. An example
of an exactly self-similar process with self-similarity parameter
H is fractional Gaussian noise (FGN) with parameter
1/2 < H < 1, introduced by Mandelbrot and Van Ness (1968).

A covariance stationary process X is called asymptotically
(second-order) self-similar with self-similarity parameter
H = 1 " $/2 if r (m) (k) agrees asymptotically (i.e., for large m and
large k) with the correlation structure r (k) of X given by (3.2.1).
The fractional autoregressive integrated moving-average
processes (fractional ARIMA(p,d,q) processes) with
0 < d < 1/2 are examples of asymptotically second-order self-
similar processes with self-similarity parameter d + 1/2. (For
more details, see Granger and Joyeux (1980), and Hosking
(1981).)

Intuitively, the most striking feature of (exactly or
asymptotically) self-similar processes is that their aggregated
processes X (m) possess a nondegenerate correlation structure as
m %&. This behavior is precisely the intuition illustrated with
the sequence of plots in Figure 1; if the original time series X
represents the number of Ethernet packets per 10 milliseconds
(plot (e)), then plots (a) to (d) depict segments of the aggregated
time series X (10000) , X (1000) , X (100) , and X (10) , respectively. All of
the plots look "similar", suggesting a nearly identical
autocorrelation function for all of the aggregated processes.

Mathematically, self-similarity manifests itself in a number of
equivalent ways (see Cox (1984)): (i) the variance of the sample
mean decreases more slowly than the reciprocal of the sample
size (slowly decaying variances), i.e., var(X (m) ) # a 2m "$ ,
as m %&, with 0 < $ < 1; (ii) the autocorrelations decay
hyperbolically rather than exponentially fast, implying a non-
summable autocorrelation function (k

r (k) = & (long-range
dependence), i.e., r (k) satisfies relation (3.2.1); and (iii) the
spectral density f ( . ) obeys a power-law behavior near the
origin (1/f-noise), i.e., f ()) # a 3)"* , as ) % 0 , with 0 < * < 1
and * = 1 " $.

The existence of a nondegenerate correlation structure for the
aggregated processes X (m) as m %& is in stark contrast to
typical packet traffic models currently considered in the
literature, all of which have the property that their aggregated
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Figure 1 (a)—(e). Pictorial "proof" of self-similarity:
Ethernet traffic (packets per time unit for the August
’89 trace) on 5 different time scales. (Different gray
levels are used to identify the same segments of traffic
on the different time scales.)

3.2 THE MATHEMATICS OF SELF-SIMILARITY
The notion of self-similarity is not merely an intuitive
description, but a precise concept captured by the following

rigorous mathematical definition. Let X = (Xt: t = 0, 1, 2, ...) be
a covariance stationary (sometimes called wide-sense
stationary) stochastic process; that is, a process with constant
mean µ = E [Xt], finite variance !2 = E [(Xt " µ)2], and an
autocorrelation function r (k) = E [(Xt " µ)(Xt + k " µ)]
/E [(Xt " µ)2] (k = 0, 1, 2, ...) that depends only on k. In
particular, we assume that X has an autocorrelation function of
the form

r (k) # a 1k "$ , as k %&, (3.2.1)

where 0 < $ < 1 (here and below, a 1, a 2, . . . denote finite
positive constants). For each m = 1, 2, 3, . . . , let
X (m) = (Xk

(m) : k = 1, 2, 3, ...) denote a new time series obtained
by averaging the original series X over non-overlapping blocks
of size m. That is, for each m = 1, 2, 3, . . . , X (m) is given by
Xk
(m) = 1/m (Xkm " m + 1 + . . . + Xkm), (k ' 1). Note that for

each m, the aggregated time series X (m) defines a covariance
stationary process; let r (m) denote the corresponding
autocorrelation function.

The process X is called exactly (second-order) self-similar with
self-similarity parameter H = 1 " $/2 if the corresponding
aggregated processes X (m) have the same correlation structure as
X, i.e., r (m) (k) = r (k), for all m = 1, 2, . . . ( k = 1, 2, 3, . . . ).
In other words, X is exactly self-similar if the aggregated
processes X (m) are indistinguishable from X—at least with
respect to their second order statistical properties. An example
of an exactly self-similar process with self-similarity parameter
H is fractional Gaussian noise (FGN) with parameter
1/2 < H < 1, introduced by Mandelbrot and Van Ness (1968).

A covariance stationary process X is called asymptotically
(second-order) self-similar with self-similarity parameter
H = 1 " $/2 if r (m) (k) agrees asymptotically (i.e., for large m and
large k) with the correlation structure r (k) of X given by (3.2.1).
The fractional autoregressive integrated moving-average
processes (fractional ARIMA(p,d,q) processes) with
0 < d < 1/2 are examples of asymptotically second-order self-
similar processes with self-similarity parameter d + 1/2. (For
more details, see Granger and Joyeux (1980), and Hosking
(1981).)

Intuitively, the most striking feature of (exactly or
asymptotically) self-similar processes is that their aggregated
processes X (m) possess a nondegenerate correlation structure as
m %&. This behavior is precisely the intuition illustrated with
the sequence of plots in Figure 1; if the original time series X
represents the number of Ethernet packets per 10 milliseconds
(plot (e)), then plots (a) to (d) depict segments of the aggregated
time series X (10000) , X (1000) , X (100) , and X (10) , respectively. All of
the plots look "similar", suggesting a nearly identical
autocorrelation function for all of the aggregated processes.

Mathematically, self-similarity manifests itself in a number of
equivalent ways (see Cox (1984)): (i) the variance of the sample
mean decreases more slowly than the reciprocal of the sample
size (slowly decaying variances), i.e., var(X (m) ) # a 2m "$ ,
as m %&, with 0 < $ < 1; (ii) the autocorrelations decay
hyperbolically rather than exponentially fast, implying a non-
summable autocorrelation function (k

r (k) = & (long-range
dependence), i.e., r (k) satisfies relation (3.2.1); and (iii) the
spectral density f ( . ) obeys a power-law behavior near the
origin (1/f-noise), i.e., f ()) # a 3)"* , as ) % 0 , with 0 < * < 1
and * = 1 " $.

The existence of a nondegenerate correlation structure for the
aggregated processes X (m) as m %& is in stark contrast to
typical packet traffic models currently considered in the
literature, all of which have the property that their aggregated
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Figure 1 (a)—(e). Pictorial "proof" of self-similarity:
Ethernet traffic (packets per time unit for the August
’89 trace) on 5 different time scales. (Different gray
levels are used to identify the same segments of traffic
on the different time scales.)

3.2 THE MATHEMATICS OF SELF-SIMILARITY
The notion of self-similarity is not merely an intuitive
description, but a precise concept captured by the following

rigorous mathematical definition. Let X = (Xt: t = 0, 1, 2, ...) be
a covariance stationary (sometimes called wide-sense
stationary) stochastic process; that is, a process with constant
mean µ = E [Xt], finite variance !2 = E [(Xt " µ)2], and an
autocorrelation function r (k) = E [(Xt " µ)(Xt + k " µ)]
/E [(Xt " µ)2] (k = 0, 1, 2, ...) that depends only on k. In
particular, we assume that X has an autocorrelation function of
the form

r (k) # a 1k "$ , as k %&, (3.2.1)

where 0 < $ < 1 (here and below, a 1, a 2, . . . denote finite
positive constants). For each m = 1, 2, 3, . . . , let
X (m) = (Xk

(m) : k = 1, 2, 3, ...) denote a new time series obtained
by averaging the original series X over non-overlapping blocks
of size m. That is, for each m = 1, 2, 3, . . . , X (m) is given by
Xk
(m) = 1/m (Xkm " m + 1 + . . . + Xkm), (k ' 1). Note that for

each m, the aggregated time series X (m) defines a covariance
stationary process; let r (m) denote the corresponding
autocorrelation function.

The process X is called exactly (second-order) self-similar with
self-similarity parameter H = 1 " $/2 if the corresponding
aggregated processes X (m) have the same correlation structure as
X, i.e., r (m) (k) = r (k), for all m = 1, 2, . . . ( k = 1, 2, 3, . . . ).
In other words, X is exactly self-similar if the aggregated
processes X (m) are indistinguishable from X—at least with
respect to their second order statistical properties. An example
of an exactly self-similar process with self-similarity parameter
H is fractional Gaussian noise (FGN) with parameter
1/2 < H < 1, introduced by Mandelbrot and Van Ness (1968).

A covariance stationary process X is called asymptotically
(second-order) self-similar with self-similarity parameter
H = 1 " $/2 if r (m) (k) agrees asymptotically (i.e., for large m and
large k) with the correlation structure r (k) of X given by (3.2.1).
The fractional autoregressive integrated moving-average
processes (fractional ARIMA(p,d,q) processes) with
0 < d < 1/2 are examples of asymptotically second-order self-
similar processes with self-similarity parameter d + 1/2. (For
more details, see Granger and Joyeux (1980), and Hosking
(1981).)

Intuitively, the most striking feature of (exactly or
asymptotically) self-similar processes is that their aggregated
processes X (m) possess a nondegenerate correlation structure as
m %&. This behavior is precisely the intuition illustrated with
the sequence of plots in Figure 1; if the original time series X
represents the number of Ethernet packets per 10 milliseconds
(plot (e)), then plots (a) to (d) depict segments of the aggregated
time series X (10000) , X (1000) , X (100) , and X (10) , respectively. All of
the plots look "similar", suggesting a nearly identical
autocorrelation function for all of the aggregated processes.

Mathematically, self-similarity manifests itself in a number of
equivalent ways (see Cox (1984)): (i) the variance of the sample
mean decreases more slowly than the reciprocal of the sample
size (slowly decaying variances), i.e., var(X (m) ) # a 2m "$ ,
as m %&, with 0 < $ < 1; (ii) the autocorrelations decay
hyperbolically rather than exponentially fast, implying a non-
summable autocorrelation function (k

r (k) = & (long-range
dependence), i.e., r (k) satisfies relation (3.2.1); and (iii) the
spectral density f ( . ) obeys a power-law behavior near the
origin (1/f-noise), i.e., f ()) # a 3)"* , as ) % 0 , with 0 < * < 1
and * = 1 " $.

The existence of a nondegenerate correlation structure for the
aggregated processes X (m) as m %& is in stark contrast to
typical packet traffic models currently considered in the
literature, all of which have the property that their aggregated
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Figure 1 (a)—(e). Pictorial "proof" of self-similarity:
Ethernet traffic (packets per time unit for the August
’89 trace) on 5 different time scales. (Different gray
levels are used to identify the same segments of traffic
on the different time scales.)

3.2 THE MATHEMATICS OF SELF-SIMILARITY
The notion of self-similarity is not merely an intuitive
description, but a precise concept captured by the following

rigorous mathematical definition. Let X = (Xt: t = 0, 1, 2, ...) be
a covariance stationary (sometimes called wide-sense
stationary) stochastic process; that is, a process with constant
mean µ = E [Xt], finite variance !2 = E [(Xt " µ)2], and an
autocorrelation function r (k) = E [(Xt " µ)(Xt + k " µ)]
/E [(Xt " µ)2] (k = 0, 1, 2, ...) that depends only on k. In
particular, we assume that X has an autocorrelation function of
the form

r (k) # a 1k "$ , as k %&, (3.2.1)

where 0 < $ < 1 (here and below, a 1, a 2, . . . denote finite
positive constants). For each m = 1, 2, 3, . . . , let
X (m) = (Xk

(m) : k = 1, 2, 3, ...) denote a new time series obtained
by averaging the original series X over non-overlapping blocks
of size m. That is, for each m = 1, 2, 3, . . . , X (m) is given by
Xk
(m) = 1/m (Xkm " m + 1 + . . . + Xkm), (k ' 1). Note that for

each m, the aggregated time series X (m) defines a covariance
stationary process; let r (m) denote the corresponding
autocorrelation function.

The process X is called exactly (second-order) self-similar with
self-similarity parameter H = 1 " $/2 if the corresponding
aggregated processes X (m) have the same correlation structure as
X, i.e., r (m) (k) = r (k), for all m = 1, 2, . . . ( k = 1, 2, 3, . . . ).
In other words, X is exactly self-similar if the aggregated
processes X (m) are indistinguishable from X—at least with
respect to their second order statistical properties. An example
of an exactly self-similar process with self-similarity parameter
H is fractional Gaussian noise (FGN) with parameter
1/2 < H < 1, introduced by Mandelbrot and Van Ness (1968).

A covariance stationary process X is called asymptotically
(second-order) self-similar with self-similarity parameter
H = 1 " $/2 if r (m) (k) agrees asymptotically (i.e., for large m and
large k) with the correlation structure r (k) of X given by (3.2.1).
The fractional autoregressive integrated moving-average
processes (fractional ARIMA(p,d,q) processes) with
0 < d < 1/2 are examples of asymptotically second-order self-
similar processes with self-similarity parameter d + 1/2. (For
more details, see Granger and Joyeux (1980), and Hosking
(1981).)

Intuitively, the most striking feature of (exactly or
asymptotically) self-similar processes is that their aggregated
processes X (m) possess a nondegenerate correlation structure as
m %&. This behavior is precisely the intuition illustrated with
the sequence of plots in Figure 1; if the original time series X
represents the number of Ethernet packets per 10 milliseconds
(plot (e)), then plots (a) to (d) depict segments of the aggregated
time series X (10000) , X (1000) , X (100) , and X (10) , respectively. All of
the plots look "similar", suggesting a nearly identical
autocorrelation function for all of the aggregated processes.

Mathematically, self-similarity manifests itself in a number of
equivalent ways (see Cox (1984)): (i) the variance of the sample
mean decreases more slowly than the reciprocal of the sample
size (slowly decaying variances), i.e., var(X (m) ) # a 2m "$ ,
as m %&, with 0 < $ < 1; (ii) the autocorrelations decay
hyperbolically rather than exponentially fast, implying a non-
summable autocorrelation function (k

r (k) = & (long-range
dependence), i.e., r (k) satisfies relation (3.2.1); and (iii) the
spectral density f ( . ) obeys a power-law behavior near the
origin (1/f-noise), i.e., f ()) # a 3)"* , as ) % 0 , with 0 < * < 1
and * = 1 " $.

The existence of a nondegenerate correlation structure for the
aggregated processes X (m) as m %& is in stark contrast to
typical packet traffic models currently considered in the
literature, all of which have the property that their aggregated
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Figure 1 (a)—(e). Pictorial "proof" of self-similarity:
Ethernet traffic (packets per time unit for the August
’89 trace) on 5 different time scales. (Different gray
levels are used to identify the same segments of traffic
on the different time scales.)

3.2 THE MATHEMATICS OF SELF-SIMILARITY
The notion of self-similarity is not merely an intuitive
description, but a precise concept captured by the following

rigorous mathematical definition. Let X = (Xt: t = 0, 1, 2, ...) be
a covariance stationary (sometimes called wide-sense
stationary) stochastic process; that is, a process with constant
mean µ = E [Xt], finite variance !2 = E [(Xt " µ)2], and an
autocorrelation function r (k) = E [(Xt " µ)(Xt + k " µ)]
/E [(Xt " µ)2] (k = 0, 1, 2, ...) that depends only on k. In
particular, we assume that X has an autocorrelation function of
the form

r (k) # a 1k "$ , as k %&, (3.2.1)

where 0 < $ < 1 (here and below, a 1, a 2, . . . denote finite
positive constants). For each m = 1, 2, 3, . . . , let
X (m) = (Xk

(m) : k = 1, 2, 3, ...) denote a new time series obtained
by averaging the original series X over non-overlapping blocks
of size m. That is, for each m = 1, 2, 3, . . . , X (m) is given by
Xk
(m) = 1/m (Xkm " m + 1 + . . . + Xkm), (k ' 1). Note that for

each m, the aggregated time series X (m) defines a covariance
stationary process; let r (m) denote the corresponding
autocorrelation function.

The process X is called exactly (second-order) self-similar with
self-similarity parameter H = 1 " $/2 if the corresponding
aggregated processes X (m) have the same correlation structure as
X, i.e., r (m) (k) = r (k), for all m = 1, 2, . . . ( k = 1, 2, 3, . . . ).
In other words, X is exactly self-similar if the aggregated
processes X (m) are indistinguishable from X—at least with
respect to their second order statistical properties. An example
of an exactly self-similar process with self-similarity parameter
H is fractional Gaussian noise (FGN) with parameter
1/2 < H < 1, introduced by Mandelbrot and Van Ness (1968).

A covariance stationary process X is called asymptotically
(second-order) self-similar with self-similarity parameter
H = 1 " $/2 if r (m) (k) agrees asymptotically (i.e., for large m and
large k) with the correlation structure r (k) of X given by (3.2.1).
The fractional autoregressive integrated moving-average
processes (fractional ARIMA(p,d,q) processes) with
0 < d < 1/2 are examples of asymptotically second-order self-
similar processes with self-similarity parameter d + 1/2. (For
more details, see Granger and Joyeux (1980), and Hosking
(1981).)

Intuitively, the most striking feature of (exactly or
asymptotically) self-similar processes is that their aggregated
processes X (m) possess a nondegenerate correlation structure as
m %&. This behavior is precisely the intuition illustrated with
the sequence of plots in Figure 1; if the original time series X
represents the number of Ethernet packets per 10 milliseconds
(plot (e)), then plots (a) to (d) depict segments of the aggregated
time series X (10000) , X (1000) , X (100) , and X (10) , respectively. All of
the plots look "similar", suggesting a nearly identical
autocorrelation function for all of the aggregated processes.

Mathematically, self-similarity manifests itself in a number of
equivalent ways (see Cox (1984)): (i) the variance of the sample
mean decreases more slowly than the reciprocal of the sample
size (slowly decaying variances), i.e., var(X (m) ) # a 2m "$ ,
as m %&, with 0 < $ < 1; (ii) the autocorrelations decay
hyperbolically rather than exponentially fast, implying a non-
summable autocorrelation function (k

r (k) = & (long-range
dependence), i.e., r (k) satisfies relation (3.2.1); and (iii) the
spectral density f ( . ) obeys a power-law behavior near the
origin (1/f-noise), i.e., f ()) # a 3)"* , as ) % 0 , with 0 < * < 1
and * = 1 " $.

The existence of a nondegenerate correlation structure for the
aggregated processes X (m) as m %& is in stark contrast to
typical packet traffic models currently considered in the
literature, all of which have the property that their aggregated
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Figure 1 (a)—(e). Pictorial "proof" of self-similarity:
Ethernet traffic (packets per time unit for the August
’89 trace) on 5 different time scales. (Different gray
levels are used to identify the same segments of traffic
on the different time scales.)

3.2 THE MATHEMATICS OF SELF-SIMILARITY
The notion of self-similarity is not merely an intuitive
description, but a precise concept captured by the following

rigorous mathematical definition. Let X = (Xt: t = 0, 1, 2, ...) be
a covariance stationary (sometimes called wide-sense
stationary) stochastic process; that is, a process with constant
mean µ = E [Xt], finite variance !2 = E [(Xt " µ)2], and an
autocorrelation function r (k) = E [(Xt " µ)(Xt + k " µ)]
/E [(Xt " µ)2] (k = 0, 1, 2, ...) that depends only on k. In
particular, we assume that X has an autocorrelation function of
the form

r (k) # a 1k "$ , as k %&, (3.2.1)

where 0 < $ < 1 (here and below, a 1, a 2, . . . denote finite
positive constants). For each m = 1, 2, 3, . . . , let
X (m) = (Xk

(m) : k = 1, 2, 3, ...) denote a new time series obtained
by averaging the original series X over non-overlapping blocks
of size m. That is, for each m = 1, 2, 3, . . . , X (m) is given by
Xk
(m) = 1/m (Xkm " m + 1 + . . . + Xkm), (k ' 1). Note that for

each m, the aggregated time series X (m) defines a covariance
stationary process; let r (m) denote the corresponding
autocorrelation function.

The process X is called exactly (second-order) self-similar with
self-similarity parameter H = 1 " $/2 if the corresponding
aggregated processes X (m) have the same correlation structure as
X, i.e., r (m) (k) = r (k), for all m = 1, 2, . . . ( k = 1, 2, 3, . . . ).
In other words, X is exactly self-similar if the aggregated
processes X (m) are indistinguishable from X—at least with
respect to their second order statistical properties. An example
of an exactly self-similar process with self-similarity parameter
H is fractional Gaussian noise (FGN) with parameter
1/2 < H < 1, introduced by Mandelbrot and Van Ness (1968).

A covariance stationary process X is called asymptotically
(second-order) self-similar with self-similarity parameter
H = 1 " $/2 if r (m) (k) agrees asymptotically (i.e., for large m and
large k) with the correlation structure r (k) of X given by (3.2.1).
The fractional autoregressive integrated moving-average
processes (fractional ARIMA(p,d,q) processes) with
0 < d < 1/2 are examples of asymptotically second-order self-
similar processes with self-similarity parameter d + 1/2. (For
more details, see Granger and Joyeux (1980), and Hosking
(1981).)

Intuitively, the most striking feature of (exactly or
asymptotically) self-similar processes is that their aggregated
processes X (m) possess a nondegenerate correlation structure as
m %&. This behavior is precisely the intuition illustrated with
the sequence of plots in Figure 1; if the original time series X
represents the number of Ethernet packets per 10 milliseconds
(plot (e)), then plots (a) to (d) depict segments of the aggregated
time series X (10000) , X (1000) , X (100) , and X (10) , respectively. All of
the plots look "similar", suggesting a nearly identical
autocorrelation function for all of the aggregated processes.

Mathematically, self-similarity manifests itself in a number of
equivalent ways (see Cox (1984)): (i) the variance of the sample
mean decreases more slowly than the reciprocal of the sample
size (slowly decaying variances), i.e., var(X (m) ) # a 2m "$ ,
as m %&, with 0 < $ < 1; (ii) the autocorrelations decay
hyperbolically rather than exponentially fast, implying a non-
summable autocorrelation function (k

r (k) = & (long-range
dependence), i.e., r (k) satisfies relation (3.2.1); and (iii) the
spectral density f ( . ) obeys a power-law behavior near the
origin (1/f-noise), i.e., f ()) # a 3)"* , as ) % 0 , with 0 < * < 1
and * = 1 " $.

The existence of a nondegenerate correlation structure for the
aggregated processes X (m) as m %& is in stark contrast to
typical packet traffic models currently considered in the
literature, all of which have the property that their aggregated
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Figure 1 (a)—(e). Pictorial "proof" of self-similarity:
Ethernet traffic (packets per time unit for the August
’89 trace) on 5 different time scales. (Different gray
levels are used to identify the same segments of traffic
on the different time scales.)

3.2 THE MATHEMATICS OF SELF-SIMILARITY
The notion of self-similarity is not merely an intuitive
description, but a precise concept captured by the following

rigorous mathematical definition. Let X = (Xt: t = 0, 1, 2, ...) be
a covariance stationary (sometimes called wide-sense
stationary) stochastic process; that is, a process with constant
mean µ = E [Xt], finite variance !2 = E [(Xt " µ)2], and an
autocorrelation function r (k) = E [(Xt " µ)(Xt + k " µ)]
/E [(Xt " µ)2] (k = 0, 1, 2, ...) that depends only on k. In
particular, we assume that X has an autocorrelation function of
the form

r (k) # a 1k "$ , as k %&, (3.2.1)

where 0 < $ < 1 (here and below, a 1, a 2, . . . denote finite
positive constants). For each m = 1, 2, 3, . . . , let
X (m) = (Xk

(m) : k = 1, 2, 3, ...) denote a new time series obtained
by averaging the original series X over non-overlapping blocks
of size m. That is, for each m = 1, 2, 3, . . . , X (m) is given by
Xk
(m) = 1/m (Xkm " m + 1 + . . . + Xkm), (k ' 1). Note that for

each m, the aggregated time series X (m) defines a covariance
stationary process; let r (m) denote the corresponding
autocorrelation function.

The process X is called exactly (second-order) self-similar with
self-similarity parameter H = 1 " $/2 if the corresponding
aggregated processes X (m) have the same correlation structure as
X, i.e., r (m) (k) = r (k), for all m = 1, 2, . . . ( k = 1, 2, 3, . . . ).
In other words, X is exactly self-similar if the aggregated
processes X (m) are indistinguishable from X—at least with
respect to their second order statistical properties. An example
of an exactly self-similar process with self-similarity parameter
H is fractional Gaussian noise (FGN) with parameter
1/2 < H < 1, introduced by Mandelbrot and Van Ness (1968).

A covariance stationary process X is called asymptotically
(second-order) self-similar with self-similarity parameter
H = 1 " $/2 if r (m) (k) agrees asymptotically (i.e., for large m and
large k) with the correlation structure r (k) of X given by (3.2.1).
The fractional autoregressive integrated moving-average
processes (fractional ARIMA(p,d,q) processes) with
0 < d < 1/2 are examples of asymptotically second-order self-
similar processes with self-similarity parameter d + 1/2. (For
more details, see Granger and Joyeux (1980), and Hosking
(1981).)

Intuitively, the most striking feature of (exactly or
asymptotically) self-similar processes is that their aggregated
processes X (m) possess a nondegenerate correlation structure as
m %&. This behavior is precisely the intuition illustrated with
the sequence of plots in Figure 1; if the original time series X
represents the number of Ethernet packets per 10 milliseconds
(plot (e)), then plots (a) to (d) depict segments of the aggregated
time series X (10000) , X (1000) , X (100) , and X (10) , respectively. All of
the plots look "similar", suggesting a nearly identical
autocorrelation function for all of the aggregated processes.

Mathematically, self-similarity manifests itself in a number of
equivalent ways (see Cox (1984)): (i) the variance of the sample
mean decreases more slowly than the reciprocal of the sample
size (slowly decaying variances), i.e., var(X (m) ) # a 2m "$ ,
as m %&, with 0 < $ < 1; (ii) the autocorrelations decay
hyperbolically rather than exponentially fast, implying a non-
summable autocorrelation function (k

r (k) = & (long-range
dependence), i.e., r (k) satisfies relation (3.2.1); and (iii) the
spectral density f ( . ) obeys a power-law behavior near the
origin (1/f-noise), i.e., f ()) # a 3)"* , as ) % 0 , with 0 < * < 1
and * = 1 " $.

The existence of a nondegenerate correlation structure for the
aggregated processes X (m) as m %& is in stark contrast to
typical packet traffic models currently considered in the
literature, all of which have the property that their aggregated
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Figure 1 (a)—(e). Pictorial "proof" of self-similarity:
Ethernet traffic (packets per time unit for the August
’89 trace) on 5 different time scales. (Different gray
levels are used to identify the same segments of traffic
on the different time scales.)

3.2 THE MATHEMATICS OF SELF-SIMILARITY
The notion of self-similarity is not merely an intuitive
description, but a precise concept captured by the following

rigorous mathematical definition. Let X = (Xt: t = 0, 1, 2, ...) be
a covariance stationary (sometimes called wide-sense
stationary) stochastic process; that is, a process with constant
mean µ = E [Xt], finite variance !2 = E [(Xt " µ)2], and an
autocorrelation function r (k) = E [(Xt " µ)(Xt + k " µ)]
/E [(Xt " µ)2] (k = 0, 1, 2, ...) that depends only on k. In
particular, we assume that X has an autocorrelation function of
the form

r (k) # a 1k "$ , as k %&, (3.2.1)

where 0 < $ < 1 (here and below, a 1, a 2, . . . denote finite
positive constants). For each m = 1, 2, 3, . . . , let
X (m) = (Xk

(m) : k = 1, 2, 3, ...) denote a new time series obtained
by averaging the original series X over non-overlapping blocks
of size m. That is, for each m = 1, 2, 3, . . . , X (m) is given by
Xk
(m) = 1/m (Xkm " m + 1 + . . . + Xkm), (k ' 1). Note that for

each m, the aggregated time series X (m) defines a covariance
stationary process; let r (m) denote the corresponding
autocorrelation function.

The process X is called exactly (second-order) self-similar with
self-similarity parameter H = 1 " $/2 if the corresponding
aggregated processes X (m) have the same correlation structure as
X, i.e., r (m) (k) = r (k), for all m = 1, 2, . . . ( k = 1, 2, 3, . . . ).
In other words, X is exactly self-similar if the aggregated
processes X (m) are indistinguishable from X—at least with
respect to their second order statistical properties. An example
of an exactly self-similar process with self-similarity parameter
H is fractional Gaussian noise (FGN) with parameter
1/2 < H < 1, introduced by Mandelbrot and Van Ness (1968).

A covariance stationary process X is called asymptotically
(second-order) self-similar with self-similarity parameter
H = 1 " $/2 if r (m) (k) agrees asymptotically (i.e., for large m and
large k) with the correlation structure r (k) of X given by (3.2.1).
The fractional autoregressive integrated moving-average
processes (fractional ARIMA(p,d,q) processes) with
0 < d < 1/2 are examples of asymptotically second-order self-
similar processes with self-similarity parameter d + 1/2. (For
more details, see Granger and Joyeux (1980), and Hosking
(1981).)

Intuitively, the most striking feature of (exactly or
asymptotically) self-similar processes is that their aggregated
processes X (m) possess a nondegenerate correlation structure as
m %&. This behavior is precisely the intuition illustrated with
the sequence of plots in Figure 1; if the original time series X
represents the number of Ethernet packets per 10 milliseconds
(plot (e)), then plots (a) to (d) depict segments of the aggregated
time series X (10000) , X (1000) , X (100) , and X (10) , respectively. All of
the plots look "similar", suggesting a nearly identical
autocorrelation function for all of the aggregated processes.

Mathematically, self-similarity manifests itself in a number of
equivalent ways (see Cox (1984)): (i) the variance of the sample
mean decreases more slowly than the reciprocal of the sample
size (slowly decaying variances), i.e., var(X (m) ) # a 2m "$ ,
as m %&, with 0 < $ < 1; (ii) the autocorrelations decay
hyperbolically rather than exponentially fast, implying a non-
summable autocorrelation function (k

r (k) = & (long-range
dependence), i.e., r (k) satisfies relation (3.2.1); and (iii) the
spectral density f ( . ) obeys a power-law behavior near the
origin (1/f-noise), i.e., f ()) # a 3)"* , as ) % 0 , with 0 < * < 1
and * = 1 " $.

The existence of a nondegenerate correlation structure for the
aggregated processes X (m) as m %& is in stark contrast to
typical packet traffic models currently considered in the
literature, all of which have the property that their aggregated
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Ethernet traffic (packets per time unit for the August
’89 trace) on 5 different time scales. (Different gray
levels are used to identify the same segments of traffic
on the different time scales.)
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a covariance stationary (sometimes called wide-sense
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mean µ = E [Xt], finite variance !2 = E [(Xt " µ)2], and an
autocorrelation function r (k) = E [(Xt " µ)(Xt + k " µ)]
/E [(Xt " µ)2] (k = 0, 1, 2, ...) that depends only on k. In
particular, we assume that X has an autocorrelation function of
the form
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where 0 < $ < 1 (here and below, a 1, a 2, . . . denote finite
positive constants). For each m = 1, 2, 3, . . . , let
X (m) = (Xk

(m) : k = 1, 2, 3, ...) denote a new time series obtained
by averaging the original series X over non-overlapping blocks
of size m. That is, for each m = 1, 2, 3, . . . , X (m) is given by
Xk
(m) = 1/m (Xkm " m + 1 + . . . + Xkm), (k ' 1). Note that for

each m, the aggregated time series X (m) defines a covariance
stationary process; let r (m) denote the corresponding
autocorrelation function.

The process X is called exactly (second-order) self-similar with
self-similarity parameter H = 1 " $/2 if the corresponding
aggregated processes X (m) have the same correlation structure as
X, i.e., r (m) (k) = r (k), for all m = 1, 2, . . . ( k = 1, 2, 3, . . . ).
In other words, X is exactly self-similar if the aggregated
processes X (m) are indistinguishable from X—at least with
respect to their second order statistical properties. An example
of an exactly self-similar process with self-similarity parameter
H is fractional Gaussian noise (FGN) with parameter
1/2 < H < 1, introduced by Mandelbrot and Van Ness (1968).

A covariance stationary process X is called asymptotically
(second-order) self-similar with self-similarity parameter
H = 1 " $/2 if r (m) (k) agrees asymptotically (i.e., for large m and
large k) with the correlation structure r (k) of X given by (3.2.1).
The fractional autoregressive integrated moving-average
processes (fractional ARIMA(p,d,q) processes) with
0 < d < 1/2 are examples of asymptotically second-order self-
similar processes with self-similarity parameter d + 1/2. (For
more details, see Granger and Joyeux (1980), and Hosking
(1981).)

Intuitively, the most striking feature of (exactly or
asymptotically) self-similar processes is that their aggregated
processes X (m) possess a nondegenerate correlation structure as
m %&. This behavior is precisely the intuition illustrated with
the sequence of plots in Figure 1; if the original time series X
represents the number of Ethernet packets per 10 milliseconds
(plot (e)), then plots (a) to (d) depict segments of the aggregated
time series X (10000) , X (1000) , X (100) , and X (10) , respectively. All of
the plots look "similar", suggesting a nearly identical
autocorrelation function for all of the aggregated processes.

Mathematically, self-similarity manifests itself in a number of
equivalent ways (see Cox (1984)): (i) the variance of the sample
mean decreases more slowly than the reciprocal of the sample
size (slowly decaying variances), i.e., var(X (m) ) # a 2m "$ ,
as m %&, with 0 < $ < 1; (ii) the autocorrelations decay
hyperbolically rather than exponentially fast, implying a non-
summable autocorrelation function (k

r (k) = & (long-range
dependence), i.e., r (k) satisfies relation (3.2.1); and (iii) the
spectral density f ( . ) obeys a power-law behavior near the
origin (1/f-noise), i.e., f ()) # a 3)"* , as ) % 0 , with 0 < * < 1
and * = 1 " $.

The existence of a nondegenerate correlation structure for the
aggregated processes X (m) as m %& is in stark contrast to
typical packet traffic models currently considered in the
literature, all of which have the property that their aggregated

ACM SIGCOMM –206– Computer Communication Review

Source: LeLand et al. 1995



IEEE Symposium on Security and Privacy

One Day of Crud at ICSI

11

Postel’s Law: Be strict in what you send and liberal in what you accept ...



IEEE Symposium on Security and Privacy

One Day of Crud at ICSI

11
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of-URI SYN-after-reset

bad-SYN-ack DNS-RR-unknown-
type inappropriate-FIN SYN-inside-

connection

bad-TCP-header-
len

DNS-truncated-
answer IRC-invalid-line SYN-seq-jump

base64-illegal-
encoding

DNS-len-lt-hdr-
len

line-terminated-
with-single-CR truncated-NTP

connection-
originator-SYN-ack

DNS-truncated-RR-
rdlength

malformed-SSH-
identification

unescaped-%-in-
URI

data-after-reset double-%-in-URI no-login-prompt unescaped-
special-URI-char

data-before-
established excess-RPC NUL-in-line unmatched-HTTP-
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forward-compress-
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What is Normal?

• Finding a stable notion of normal is hard for networks. 

• Network traffic is composed of many individual sessions.
• Leads to enormous variety and unpredictable behavior. 
• Observable on all layers of the protocol stack.

• Violates an implicit assumption:  Outliers are attacks!

• Ignoring this leads to a semantic gap
• Disconnect between what the system reports and what the operator wants.
• Root cause for the common complaint of  “too many false positives”.  

• Each mistake costs scarce analyst time.

12
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Mistakes in Other Domains

13

OCR Spell Checker

Image Analysis Human Eye

Translation Low Expectation

Collaborative 
Filtering Not much impact.

“ [Recommendations are] guess work. 
Our error rate will always be high.”

- Greg Linden (Amazon)
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Building  a Good Anomaly Detector

• Limit the detector’s scope.
• What concrete attack is the system to find?
• Define a problem for which machine learning makes less mistakes.

• Gain insight into capabilities and limitations.
• What exactly does it detect and why? What not and why not?

• What are the features conceptually able to capture? 

• When exactly does it break?

• Acknowledge shortcomings.

• Examine false and true positives/negatives.

14
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What Can we Do?

• Limit the detector’s scope.
• What concrete attack is the system to find?
• Define a problem for which machine learning makes less mistakes.

• Gain insight into capabilities and limitations.
• What exactly does it detect and why? What not and why not?
• What are the features conceptually able to capture? 

 
• When exactly does it break?
• Acknowledge shortcomings.
• Examine false and true positives/negatives.

• Assume the perspective of a network operator.
• How does the detector help with operations? 
• Gold standard: work with operators. If they deem it useful, you got it right.

16
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Once you have done all this ...
... you might notice that you now know enough about 
the activity you’re looking for that you don’t need any 

machine learning.
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Why is Anomaly Detection Hard?

17

The intrusion detection domain faces challenges that 
make it fundamentally different from other fields.

•  Outlier detection and the high costs of errors

•  Interpretation of results

•  Evaluation!

•  Training data

•  Evasion risk

Can we still make it work?
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Conclusion

• Machine learning for intrusion detection is challenging.
• Reasonable and possible, but needs care.
• Consider fundamental differences to other domains. 

 

• There is some good anomaly detection work out there.

• If you do anomaly detection, understand and explain.

• If you are given an anomaly detector, ask questions. 
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“Open questions: 
[...] Soundness of Approach: Does the approach actually 
detect intrusions? Is it possible to distinguish anomalies 
related to intrusions from those related to other factors?”
-Denning, 1987
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