
5/24/10

1

 Tamper Evident Microprocessors

Adam Waksman
Simha Sethumadhavan

Computer Architecture & Security Technologies Lab (CASTL)
Department of Computer Science

Columbia University

1

Modern Hardware is Complex

•  Modern systems built on layers of hardware

•  Complexity increases risk of backdoors
•  More hands

•  Easier to hide

•  A significant vulnerability
•  Hardware is the root of trust

•  All hardware and software controlled by microprocessors

Applications

OS

Hypervisor

Motherboard/

Slave Chips

CPU

Prior Work and Scope

•  Microprocessor design stages

•  Prior work focuses on back end
•  More immediate threat

•  Example: IC fingerprinting [Agrawal et al., 2007]

•  Front end is the extreme root
•  Common assumption: golden model from front end

•  Focus of this work

High Level
Design

Specification
Design

Validation
Physical
Design

Tapeout/
Fabrication

Deployment

Back End Front End

Key Idea: Use Inherent Division of Work

•  Bob
•  Nice Guy

•  Donates $100

•  Eric
•  Evil Accountant

•  Steals $10

•  Alice
•  Charity President

•  Receives $90

Thank you, Bob, for your $90

Fetch Decode Execute

Microprocessor Pipeline Stages Analogue

(Bob) (Eric) (Alice)

Outline

•  Taxonomy
•  Ticking Timebombs, Cheat Codes, Emitters, Corrupters

•  Solutions
•  TrustNet and DataWatch

•  Results
•  Correctness, Coverage and Costs

•  Future Work

Taxonomy of Attacks

•  Backdoor = Trigger + Payload
•  Trigger: Turns on an attack

•  Payload: Malicious, illegal action

Triggers

Data Time

Payloads

Emitter Corrupter

5/24/10

2

Taxonomy of Attacks: Triggers

Triggers

Data Time

Taxonomy of Attacks: Payloads

•  Emitter Attacks
•  Extra malicious events

•  Separate from normal events

Payloads

Emitter Corrupter

•  Corrupter Attacks
•  No extra malicious events

•  Normal instructions altered

Taxonomy of Attacks: Summary

Emitter
Timebomb

Corrupter
Timebomb

Emitter
Cheatcode

Corrupter
Cheatcode

Assumptions

•  Large design team
•  Each designer works on one unit or part of one

•  Security add-ons cannot be done by one member

•  Full knowledge
•  Attacker has complete access to all design specifications

•  Attacker also knows about additional security mechanism

•  Equal distrust
•  Any one designer/unit may be evil

•  Security add-ons may contain backdoors

Outline

•  Taxonomy
•  Ticking Timebombs, Cheat Codes, Emitters, Corrupters

•  Solutions
•  TrustNet and DataWatch

•  Results
•  Correctness, Coverage and Costs

•  Future Work

Sample Emitter Backdoor

•  Consider a malicious instruction decoder
•  Decoder emits instructions not in the original program

•  Execution unit faithfully executes them

Fetch Fetch Fetch Decode Execute

Spurious Output

5/24/10

3

TrustNet

•  Predictor and Reactor monitor the Target
•  Division of work prevents one bad guy from breaking two units

•  Scaling to larger number increases design complexity

Predictor Reactor

Target

add $r1, $r2, $r3

Fetch

Decode

Execute

Corrupter Backdoors

•  Bob
•  Still nice

•  Donates $100

•  Eric
•  Evil (and smarter)

•  Converts to Canadian $

•  Alice
•  Still president

•  Fooled by Eric’s C$100

Thank you, Bob, for your C$100

DataWatch

•  Scaled up version of TrustNet
•  Multiple bit messages

•  Confirms types of messages (instead of just yes/no)

Predictor Reactor

Target

add $r1, $r2, $r3

Fetch

Decode

Execute

SUB $r1, $r2, $r3

STOP

Outline

•  Taxonomy
•  Ticking Timebombs, Cheat Codes, Emitters, Corrupters

•  Solutions
•  TrustNet and DataWatch

•  Results
•  Correctness, Coverage and Costs

•  Future Work

Experimental Context, Correctness, Costs

•  Context
•  Simplified OpenSPARC T2

•  Correctness
•  Designed attacks

•  No false positives or negatives

•  Costs
•  Low area overhead (2 KB per core)

•  No performance impact

•  How to measure coverage?

18

Units with a core Units with a core

Paper has plots for other units at a chip level

Coverage: Vulnerability Space

5/24/10

4

19

Coverage Visualization

WARNING:
This is an approximate
vizualization

19

Summary and Future Work

•  Strengthen root of trust: microprocessors
•  Hardware-only solution. No perf impact, low area overhead

•  Security add-on highly resilient to corruption

•  Provided attack taxonomy, method to characterize attack space

•  Applicability of TrustNet & DataWatch
•  Covered: pipelines, caches and content associative memory

•  Not covered: ALU, microcode, power mgmt., side-channels

•  Moving Forward
•  Expand coverage

•  Out-of-order processors

•  Motherboard components

•  Design automation tools

•  Reaction to errors

•  Applying techniques for reliable execution

•  First steps toward a secure trusted hardware w/ untrusted units

✔

Thank You! and Questions?

