
HyperSafe:
A Lightweight Approach to Provide

Lifetime Hypervisor
Control-Flow Integrity

31st IEEE Symposium on Security & Privacy, Oakland CA, May 16-19 2010

Zhi Wang, Xuxian Jiang
North Carolina State University

Outline

 Motivation

 Design

 Implementation & Evaluation

 Related Work

 Summary

Outline

 Motivation

 Design

 Implementation & Evaluation

 Related Work

 Summary

Virtualization Adoption

 Rapidly growing in industry
 16% server workloads on virtual machines now
 50% by 20121

 Widely applied to security problems
 Guest integrity monitoring

ReVirt (Dunlap et al, OSDI ‘02), Livewire (Garfinkel et al, NDSS ‘03),
VMwatcher (Jiang et al, CCS ‘07), Lares (Payne et al, Oakland ‘08), SIM
(Sharif et al, CCS ’09)…

 Guest integrity protection
SecVisor (Seshadri et al, SOSP ‘07), NICKLE (Riley et al, RAID ‘08),
HookSafe (Wang et al, CCS ‘09)…

 System software analysis
AfterSight (Chow et al, USENIX ATC ’08), K-Tracer (Lanzi et al, NDSS ‘09),
PoKeR (Riley et al, EuroSys ‘09) …

 …

1:Gartner Symposium/ITxpo 2009

Common Assumption

A Trustworthy Hypervisor!

Bloated TCB of Type I Hypervisors

Hypervisor Hypervisor SLOC TCB

Xen-4.0 194K Xen, Dom0

VMware ESXi1 200K VM Kernel

Hyper-V1 100K Hyper-V, Windows 2008 Server

BitVisor 194K BitVisor

1. NOVA: A Microhypervisor-Based Secure Virtualization Architecture (Udo Steinberg et al, EuroSys ‘10)

Vulnerabilities & Attacks

 Common Vulnerabilities and Exposures (CVE)

 Xen - 26, VMware ESX - 18 (til 11/2009)

 VM escape attacks
 Xen 0wning Trilogy (Invisible Things Lab, Blackhat ‘08)

 Cloudburst: A VMware Guest to Host Escape (Kostya
Kortchinsky, Blackhat ‘09)

 Hypervisor based rootkits
 SubVirt (King et al, Oakland ‘06), Blue Pill (Invisible Things

Lab, Blackhat ‘06), Virtiol (Dino A. Dai Zovi, Blackhat ‘06)

Existing Solutions

 Reduce TCB
 TrustVisor (McCune et al, Oakland ‘10), NOVA (Steinberg et

al, EuroSys ‘10) , Improving Xen Security through
Disaggregation (Murray et al, VEE ‘08), …

 Formal verification

 seL4 (Klein et al, SOSP ‘09), …

Our goal is to enable self-protection of
commodity type-I (bare-metal) hypervisors!

Outline

 Motivation

 Design

 Implementation & Evaluation

 Related Work

 Summary

Assumptions

 Trustworthy (x86) hardware

 IOMMU to prevent malicious DMA transactions

 Trusted System Management Mode (SMM)

 Software bugs in the hypervisor

Our Approach: HyperSafe

lifetime

hypervisor CFI

load-time

integrity

runtime CFI

code integrity

control data

integrity

trusted booting

(e.g. tboot)

non-bypassable

memory lockdown

restricted

pointer indexing

Non-bypassable Memory Lockdown

x86 Paging Mode

 Page tables determine memory properties
 Permissions in a page table entry:

 NX – Non-executable

 R/W – Read-only or Writable

 U/S – User or supervisor page

 W X: a page can be either writable

or executable, but not both

 All memory accesses by software are translated and
controlled by page tables
 Including reads/writes of page tables

N

X

R

W

U

S

N

X

R

W

U

S

N

X

R

W

U

S

…

HyperSafe’s Memory Lockdown

 Pitfalls in existing W X

Mixed code and data

Mixed code and data are prohibited

 Double mapping with conflicting attributes

 Double mapping must have conforming attributes

Writable page tables

 Read-only page tables

No code can modify the write-protected
hypervisor code and data!

Challenge

How to safely allow benign
page table updates???

Hardware Feature to the Rescue!

 Write-protect (WP) bit in CR0 controls interaction of
supervisor and read-only pages
 WP = 1: Read-only pages are protected even from supervisor

 WP = 0: Supervisor can write into read-only pages

Benign Page Table Updates

 WP = 1 by default to lock down memory

 Update page table atomically
1. Disable interrupt

2. WP = 0

3. Verify proposed change

4. Update read-only page table

5. WP = 1

6. Enable interrupt

Read-only Page Tables

WP

off

WP

on

Restricted Pointer Indexing (RPI)

Control Flow Integrity (CFI)

 CFI: runtime execution paths must follow control
flow graph (CFG)

 CFG may have different granularities

Coarse-grained Fine-grained

Indirect call may go to:

All indirectly

called functions

Functions with

same type
Points-to set

CFG Construction in HyperSafe

 Points-to analysis required

 Manual analysis to handle domain knowledge /
assembly code in prototype
 e.g. assembly code to access per-cpu data (function

pointers) in gs segments

Enforce Control Flow Integrity

 Restricted Pointer Indexing
 Collect control data into tables (protected by memory

lockdown)

 Replace control data with the indexes to the table

 Convert the index back to transfer control

Only legitimate control data in the table
can be used for control flow transfer!

Outline

 Motivation

 Design

 Implementation & Evaluation

 Related Work

 Summary

Implementation

 Implementing techniques:
 Memory lockdown: modify hypervisor’s memory

management code

 Restricted Pointer Indexing: extend LLVM compiler to
instrument related instructions

 Prototypes of HyperSafe:
 Full support for BitVisor

 Partial support for Xen, additional engineering needed

Security Analysis

 Disable WP bit

 Misuse page table update function RPI

 Subvert page table
 Misuse page table update function RPI

 Map hypervisor memory to a compromised guest VM
Memory lockdown

 Return-oriented programming Memory lockdown,

RPI

Performance: Applications

 HS-2 implements coarse-grained RPI with two target tables
(return instructions and indirect calls)

 HS-m implements fine-grained RPI with one target table per
function and indirect call

1%

6%

1%1%

5%

0%

Decompress Kernel Build ApacheBench

Normalized Application Overhead Compared to Original BitVisor

HS-2 HS-m

Performance: LMbench

5.5%

1.2%
0.6%

3.4%

4.5%

5.4%

0.6% 0.0%

-2.4% -2.2%

3.5%

2.8%

ctx stat mmap sh proc 10K file bcopy

Normalized LMbench Overhead Compared to Original BitVisor

HS-2 HS-m

Related Work

 Program Analysis and Formal Proof
 seL4 (Klein et al, SOSP ‘09), WIT (Akritidis et al, SOSP ‘08), KLEE

(Cadar et al, OSDI ‘08), …

 Guest Integrity Monitoring or Protection
 SIM (Sharif et al, CCS ‘09), SecVisor (Seshadri et al, SOSP ‘07), SBCFI

(Petroni et al, CCS ‘07), …

 Trusted Computing
 TrustVisor (McCune et al, Oakland ‘10), Flicker (McCune et al,

EuroSys ‘08), Pioneer (Seshadri et al, SOSP ’05), …

Summary

 HyperSafe is a lightweight approach to provide
lifetime control-flow integrity for commodity Type-
I hypervisors.

lifetime

hypervisor CFI

load-time

integrity

runtime CFI

code integrity

control data

integrity

trusted booting

(e.g. tboot)

non-bypassable

memory lockdown

restricted

pointer indexing

Thanks, Questions?

