
HyperSafe:
A Lightweight Approach to Provide

Lifetime Hypervisor
Control-Flow Integrity

31st IEEE Symposium on Security & Privacy, Oakland CA, May 16-19 2010

Zhi Wang, Xuxian Jiang
North Carolina State University

Outline

 Motivation

 Design

 Implementation & Evaluation

 Related Work

 Summary

Outline

 Motivation

 Design

 Implementation & Evaluation

 Related Work

 Summary

Virtualization Adoption

 Rapidly growing in industry
 16% server workloads on virtual machines now
 50% by 20121

 Widely applied to security problems
 Guest integrity monitoring

ReVirt (Dunlap et al, OSDI ‘02), Livewire (Garfinkel et al, NDSS ‘03),
VMwatcher (Jiang et al, CCS ‘07), Lares (Payne et al, Oakland ‘08), SIM
(Sharif et al, CCS ’09)…

 Guest integrity protection
SecVisor (Seshadri et al, SOSP ‘07), NICKLE (Riley et al, RAID ‘08),
HookSafe (Wang et al, CCS ‘09)…

 System software analysis
AfterSight (Chow et al, USENIX ATC ’08), K-Tracer (Lanzi et al, NDSS ‘09),
PoKeR (Riley et al, EuroSys ‘09) …

 …

1:Gartner Symposium/ITxpo 2009

Common Assumption

A Trustworthy Hypervisor!

Bloated TCB of Type I Hypervisors

Hypervisor Hypervisor SLOC TCB

Xen-4.0 194K Xen, Dom0

VMware ESXi1 200K VM Kernel

Hyper-V1 100K Hyper-V, Windows 2008 Server

BitVisor 194K BitVisor

1. NOVA: A Microhypervisor-Based Secure Virtualization Architecture (Udo Steinberg et al, EuroSys ‘10)

Vulnerabilities & Attacks

 Common Vulnerabilities and Exposures (CVE)

 Xen - 26, VMware ESX - 18 (til 11/2009)

 VM escape attacks
 Xen 0wning Trilogy (Invisible Things Lab, Blackhat ‘08)

 Cloudburst: A VMware Guest to Host Escape (Kostya
Kortchinsky, Blackhat ‘09)

 Hypervisor based rootkits
 SubVirt (King et al, Oakland ‘06), Blue Pill (Invisible Things

Lab, Blackhat ‘06), Virtiol (Dino A. Dai Zovi, Blackhat ‘06)

Existing Solutions

 Reduce TCB
 TrustVisor (McCune et al, Oakland ‘10), NOVA (Steinberg et

al, EuroSys ‘10) , Improving Xen Security through
Disaggregation (Murray et al, VEE ‘08), …

 Formal verification

 seL4 (Klein et al, SOSP ‘09), …

Our goal is to enable self-protection of
commodity type-I (bare-metal) hypervisors!

Outline

 Motivation

 Design

 Implementation & Evaluation

 Related Work

 Summary

Assumptions

 Trustworthy (x86) hardware

 IOMMU to prevent malicious DMA transactions

 Trusted System Management Mode (SMM)

 Software bugs in the hypervisor

Our Approach: HyperSafe

lifetime

hypervisor CFI

load-time

integrity

runtime CFI

code integrity

control data

integrity

trusted booting

(e.g. tboot)

non-bypassable

memory lockdown

restricted

pointer indexing

Non-bypassable Memory Lockdown

x86 Paging Mode

 Page tables determine memory properties
 Permissions in a page table entry:

 NX – Non-executable

 R/W – Read-only or Writable

 U/S – User or supervisor page

 W  X: a page can be either writable

or executable, but not both

 All memory accesses by software are translated and
controlled by page tables
 Including reads/writes of page tables

N

X

R

W

U

S

N

X

R

W

U

S

N

X

R

W

U

S

…

HyperSafe’s Memory Lockdown

 Pitfalls in existing W  X

Mixed code and data

Mixed code and data are prohibited

 Double mapping with conflicting attributes

 Double mapping must have conforming attributes

Writable page tables

 Read-only page tables

No code can modify the write-protected
hypervisor code and data!

Challenge

How to safely allow benign
page table updates???

Hardware Feature to the Rescue!

 Write-protect (WP) bit in CR0 controls interaction of
supervisor and read-only pages
 WP = 1: Read-only pages are protected even from supervisor

 WP = 0: Supervisor can write into read-only pages

Benign Page Table Updates

 WP = 1 by default to lock down memory

 Update page table atomically
1. Disable interrupt

2. WP = 0

3. Verify proposed change

4. Update read-only page table

5. WP = 1

6. Enable interrupt

Read-only Page Tables

WP

off

WP

on

Restricted Pointer Indexing (RPI)

Control Flow Integrity (CFI)

 CFI: runtime execution paths must follow control
flow graph (CFG)

 CFG may have different granularities

Coarse-grained Fine-grained

Indirect call may go to:

All indirectly

called functions

Functions with

same type
Points-to set

CFG Construction in HyperSafe

 Points-to analysis required

 Manual analysis to handle domain knowledge /
assembly code in prototype
 e.g. assembly code to access per-cpu data (function

pointers) in gs segments

Enforce Control Flow Integrity

 Restricted Pointer Indexing
 Collect control data into tables (protected by memory

lockdown)

 Replace control data with the indexes to the table

 Convert the index back to transfer control

Only legitimate control data in the table
can be used for control flow transfer!

Outline

 Motivation

 Design

 Implementation & Evaluation

 Related Work

 Summary

Implementation

 Implementing techniques:
 Memory lockdown: modify hypervisor’s memory

management code

 Restricted Pointer Indexing: extend LLVM compiler to
instrument related instructions

 Prototypes of HyperSafe:
 Full support for BitVisor

 Partial support for Xen, additional engineering needed

Security Analysis

 Disable WP bit

 Misuse page table update function  RPI

 Subvert page table
 Misuse page table update function  RPI

 Map hypervisor memory to a compromised guest VM 
Memory lockdown

 Return-oriented programming Memory lockdown,

RPI

Performance: Applications

 HS-2 implements coarse-grained RPI with two target tables
(return instructions and indirect calls)

 HS-m implements fine-grained RPI with one target table per
function and indirect call

1%

6%

1%1%

5%

0%

Decompress Kernel Build ApacheBench

Normalized Application Overhead Compared to Original BitVisor

HS-2 HS-m

Performance: LMbench

5.5%

1.2%
0.6%

3.4%

4.5%

5.4%

0.6% 0.0%

-2.4% -2.2%

3.5%

2.8%

ctx stat mmap sh proc 10K file bcopy

Normalized LMbench Overhead Compared to Original BitVisor

HS-2 HS-m

Related Work

 Program Analysis and Formal Proof
 seL4 (Klein et al, SOSP ‘09), WIT (Akritidis et al, SOSP ‘08), KLEE

(Cadar et al, OSDI ‘08), …

 Guest Integrity Monitoring or Protection
 SIM (Sharif et al, CCS ‘09), SecVisor (Seshadri et al, SOSP ‘07), SBCFI

(Petroni et al, CCS ‘07), …

 Trusted Computing
 TrustVisor (McCune et al, Oakland ‘10), Flicker (McCune et al,

EuroSys ‘08), Pioneer (Seshadri et al, SOSP ’05), …

Summary

 HyperSafe is a lightweight approach to provide
lifetime control-flow integrity for commodity Type-
I hypervisors.

lifetime

hypervisor CFI

load-time

integrity

runtime CFI

code integrity

control data

integrity

trusted booting

(e.g. tboot)

non-bypassable

memory lockdown

restricted

pointer indexing

Thanks, Questions?

