
Overcoming an
UNTRUSTED COMPUTING BASE:
 Detecting and Removing Malicious
 Hardware Automatically

Matthew Hicks
Murph Finnicum
Samuel T. King

University of Illinois Urbana-Champaign

Milo M. K. Martin
Jonathan M. Smith

University of Pennsylvania

Hardware is too important to trust
blindly

Hardware

Rest of the system

Hardware is as complex as
software

Hardware complexity equals
hardware vulnerability

BlueChip looks for malicious
insertions at design time and prevents
them from affecting the system during

runtime

BlueChip is both hardware and
software, design time and run time

Run time

Design time

Identify malicious circuits - UCI

Disable malicious circuits – BlueChip hardware

Original design

Handle missing hardware – BlueChip software

So f twa re s y s t em Design
 Implementation
 Experiments
 Conclusion
 Questions

BlueChip helps managers
increase trust, without
requiring them to know
more

UCI highlights potentially
malicious circuits automatically

Attackers must avoid impacting
functionality during testing UCI detects

all circuits
where the

output value
is identical
to the input
value, for all
test cases

Data-flow triples generation

start at output signals
recurse_tuples

 for each item in the parents list
 generate a tuple
 for each driver
 add self to temp parents list
 if driver behind a flip-flop
 increase delay in temp parents list
 recurse on child

Triples:
(good, m, 0)

Triples:
(good, m, 0)
(good, out, 0)

Triples:
(good, m, 0)
(good, out, 0)
(bad, m, 0)

Triples:
(good, m, 0)
(good, out, 0)
(bad, m, 0)
(bad, out, 0)
(m, out, 0)
(good, n, 0)
(bad, n, 0)
(n, out, 0)

UCI Analysis

for each test case
 for each clock cycle
 for each dataflow triple remaining
 if target != driver(delay)
 remove triple

Triples:
(good, m, 0)
(good, out, 0)
(bad, m, 0)
(bad, out, 0)
(m, out, 0)
(good, n, 0)
(bad, n, 0)
(n, out, 0)

Test cases:
C1 C2
0 0
0 1
1 0
... ...
1 0

Test cases:
C1 C2
0 0
0 1
1 0
... ...
1 0

Triples:
(good, m, 0)
(good, out, 0)
(bad, m, 0)
(bad, out, 0)
(m, out, 0)
(good, n, 0)
(bad, n, 0)
(n, out, 0)

Test cases:
C1 C2
0 0
0 1
1 0
... ...
1 0

Triples:
(good, m, 0)
(good, out, 0)
(bad, m, 0)
(bad, out, 0)
(m, out, 0)
(good, n, 0)
(bad, n, 0)
(n, out, 0)

Test cases:
C1 C2
0 0
0 1
1 0
... ...
1 0

Triples:
(good, m, 0)
(good, out, 0)
(bad, m, 0)
(bad, out, 0)
(m, out, 0)
(good, n, 0)
(bad, n, 0)
(n, out, 0)

BlueChip is both hardware and
software, design time and run time

HW HW HW HW

!"#$%
&'#"#%

!"#$%
&'#"#%

()*"+,-.%

()*"+,-.%

Circuit designed Attack inserted Suspicious circuits
identified and

removed

Hardware triggers
emulation software

OS

Design Time Run Time

BlueChip hardware alerts software
when it attempts to use
removed circuits

BlueChip software emulates the
behavior of removed hardware

1.  Receive BlueChip exception
2.  Load state of processor
3.  Fetch trapping instruction
4.  Decode trapping instruction
5.  Execute trapping instruction in emulator
6.  Store updated state to hardware
7.  Return from trap

BlueChip does NOT emulate the
removed hardware

BlueChip DOES emulate the
behavior of the hardware spec at a

higher level of abstraction

•  Undefined state
– Low visibility test cases
– Architecturally undefined state

•  Malicious test cases
–  ISA emulator also vettes test cases

•  Control information
–  Implementation dependent

BlueChip isn’t effective in certain
situations

 Design

Implementation
 Experiments
 Conclusion
 Questions

 Design
 Implementation

Experiments
 Conclusion
 Questions

BlueChip successfully prevents
malicious hardware

 BlueChip handles UCI false
positives

 BlueChip has a low overhead

 Design
 Implementation
 Experiments

Conclusion
 Questions

BlueChip allows flexible
handling of untrusted
hardware

 Design
 Implementation
 Experiments
 Conclusion

Questions

 UCI isn’t as complex as it
seems

 Code coverage is deficient in
both time and space

It Can Happen

IF (r.d.inst (conv_integer (r.d.set)) = X"80082000") THEN
 hackStateM1 <= '1';
ELSE
 hackStateM1 <= '0';
END IF;

IF (r.d.inst (conv_integer (r.d.set)) = X"80102000") THEN
 r.w.s.s <= hackStateM1 OR rin.w.s.s;
ELSE
 r.w.s.s <= rin.w.s.s;
END IF;

Hardware attacks can be
trivial to implement, but

hard to detect

Sometimes BlueChip software
must emulate around instructions

…
OR r3, r4, r3
…

…

// Load regs[r3] and regs[r4] in l3 and l4

SUB g0, 1, l5

XOR l3, l5, l3

XOR l4, l5, l4

NAND l3, l4, l3

// Store l3 into regs[r3]

…

Sometimes BlueChip software
must emulate around instructions

…
STH r3, [r4]
…

…

// Load regs[r3] and regs[r4] in l3 and l4

LD [l4-2], l5

AND l3, 0xffff, l3

SRL l5, 16, l5

SLL l5, 16, l5

OR l5, l3, l3

ST l3, [l4-2]

…

Assumes r4 is not word
aligned

Sometimes BlueChip software fails
to make forward progress

…
STH r3, [r4]
…

…

// Load regs[r3] and regs[r4] in l3 and l4

LD [l4-2], l5

AND l3, 0xffff, l3

SRL l5, 16, l5

SLL l5, 16, l5

OR l5, l3, l3

ST l3, [l4-2]

…

What happens when the
attack triggers on

0x40005555 <= address
>= 0x4000AAAA

When r4 = 0x40005CCE

