
Int. Secure Systems Lab
Vienna University of Technology

Paolo Milani Comparetti
Guido Salvaneschi
Engin Kirda
Clemens Kolbitsch
Christopher Kruegel
Stefano Zanero

Identifying Dormant Functionality in
Malware Programs

Vienna University of Technology
Polotecnico di Milano

Institute Eurecom
Vienna University of Technology

UC Santa Barbara
Politecnico di Milano

Int. Secure Systems Lab
Vienna University of Technology

IEEE Symposium on Security & Privacy, May 17 2010 2

Motivation

• Malicious code (malware) at the root of many internet
security problems
– ~50000 new samples each day!

• Automated dynamic analysis
– run samples in an instrumented sandbox

• Dynamic analysis provides limited coverage
– different behavior based on commands from C&C channel

• How can we learn more about malware samples?

Int. Secure Systems Lab
Vienna University of Technology

IEEE Symposium on Security & Privacy, May 17 2010 3

Our Approach

• Leverage code reuse between malware samples

• Automatically generate semantic-aware models of
malicious behavior
– based on 1 execution of a behavior
– model 1 implementation of the behavior

• Use these models to statically detect the malicious
functionality in samples that do not perform that
behavior during dynamic analysis

Int. Secure Systems Lab
Vienna University of Technology

IEEE Symposium on Security & Privacy, May 17 2010 4

REANIMATOR

• Run malware in monitored environment and detect a
malicious behavior (phenotype)

• Identify and model the code responsible for the
malicious behavior (genotype model)

• Match genotype model against other binaries

Int. Secure Systems Lab
Vienna University of Technology

IEEE Symposium on Security & Privacy, May 17 2010 5

Outline

• REANIMATOR: Identifying dormant functionality
– Dynamic behavior identification
– Extracting genotype models
– Finding dormant functionality

• Evaluation

• Conclusions

Int. Secure Systems Lab
Vienna University of Technology

IEEE Symposium on Security & Privacy, May 17 2010 6

REANIMATOR

Int. Secure Systems Lab
Vienna University of Technology

IEEE Symposium on Security & Privacy, May 17 2010 7

Dynamic Behavior Identification

Int. Secure Systems Lab
Vienna University of Technology

IEEE Symposium on Security & Privacy, May 17 2010 8

Dynamic Behavior Identification

• Run malware in instrumented sandbox
– Anubis

• Dynamically detect a behavior B (phenotype)

• Map B to the set R
B
 of system/API call instances

responsible for it

• R
B
 is the output of the behavior identification phase

Int. Secure Systems Lab
Vienna University of Technology

IEEE Symposium on Security & Privacy, May 17 2010 9

Behavior Detection Examples

• spam: send SMTP traffic on port 25
– network level detection

• sniff: open promiscuous mode socket
– system call level detection

• rpcbind: attempt remote exploit against a specific
vulnerability
– network level detection, with snort signature

• drop: drop and execute a binary
– system call level detection, using data flow information

• ...

Int. Secure Systems Lab
Vienna University of Technology

IEEE Symposium on Security & Privacy, May 17 2010 10

Extracting Genotype Models

Int. Secure Systems Lab
Vienna University of Technology

IEEE Symposium on Security & Privacy, May 17 2010 11

Extracting Genotype Models

• Take as input the set R
B
of relevant system/API calls

• Identify the code responsible for behavior B
(genotype)

• Model the code responsible for behavior B (genotype
model)

• The genotype model can then be statically, efficiently
used for detecting the corresponding genotype and
phenotype in other binaries that did not perform B
during dynamic analysis

Int. Secure Systems Lab
Vienna University of Technology

IEEE Symposium on Security & Privacy, May 17 2010 12

Extracting Genotype Models: Goals

• Identified genotype should be precise and complete

• Complete: include all of the code implementing B

• Precise: do not include code that is not specific to B
(utility functions,..)

Int. Secure Systems Lab
Vienna University of Technology

IEEE Symposium on Security & Privacy, May 17 2010 13

Extracting Genotype Models: Steps

• Slicing:
– obtain an initial set of instructions (genotype) ϕ that are

related to R
B

• Filtering:
– increase the precision of the genotype by removing from ϕ

instructions that are not specific to B

• Germination:
– increase the completeness of the model by adding

instructions to ϕ

Int. Secure Systems Lab
Vienna University of Technology

IEEE Symposium on Security & Privacy, May 17 2010 14

Step 1: Slicing

• Start from relevant calls R
B

• Include into slice ϕ instructions involved in:
– preparing input for calls in R

B

• follow data flow dependencies backwards from call inputs

– processing the outputs of calls in R
B

• follow data flow forward from call outputs

• We do not consider control-flow dependencies
– would lead to including too much code (taint explosion

problem)

Int. Secure Systems Lab
Vienna University of Technology

IEEE Symposium on Security & Privacy, May 17 2010 15

Step 2: Filtering

• The slice ϕ is not precise
• General purpose utility functions executed as part of

behavior are included (i.e: string processing)
– may be from statically linked libraries (i.e: libc)
– genotype model would match against any binary that links

to the same library

• Backwards slicing goes too far back: initialization and
even unpacking routines are often included
– genotype model would match against any malware packed

with the same packer

Int. Secure Systems Lab
Vienna University of Technology

IEEE Symposium on Security & Privacy, May 17 2010 16

Filtering Techniques

• Exclusive instructions:
– set of instructions that manipulate tainted data every time

they are executed
– utility functions are likely to be also invoked on untainted

data

• Discard whitelisted code:
– whitelist obtained from other tasks or execution of the same

sample, that do not perform B
– could also use foreign whitelist

• i.e: including common libraries and unpacking routines

Int. Secure Systems Lab
Vienna University of Technology

IEEE Symposium on Security & Privacy, May 17 2010 17

Step 3: Germination

• The slice ϕ is not complete
• Auxiliary instructions are not included

– loop and stack operations, pointer arithmetic, etc

• Add instructions that cannot be executed without
executing at least one instruction in ϕ

• Based on graph reachability analysis on the intra-
procedural Control Flow Graph (CFG)

Int. Secure Systems Lab
Vienna University of Technology

IEEE Symposium on Security & Privacy, May 17 2010 18

Finding Dormant Functionality

Int. Secure Systems Lab
Vienna University of Technology

IEEE Symposium on Security & Privacy, May 17 2010 19

Finding Dormant Functionality

• Genotype is a set of instructions

• Genotype model is its colored control flow graph (CFG)
– nodes colored based on instruction classes

• 2 models match if they share at least a K-Node subgraph
(K=10)

• Use techniques from our previous work [1] to efficiently match
a binary against a set of genotype models

• We use Anubis as a generic unpacker

[1] "Polymorphic Worm Detection Using Structural Information of
Executables", RAID 2005

Int. Secure Systems Lab
Vienna University of Technology

IEEE Symposium on Security & Privacy, May 17 2010 20

Evaluation

Int. Secure Systems Lab
Vienna University of Technology

IEEE Symposium on Security & Privacy, May 17 2010 21

Evaluation

• Extract genotype models from a sample
• Match these genotypes against other samples
• Are the results accurate?

– when REANIMATOR detects a match, is there really the
dormant behavior?

– how reliably does REANIMATOR detect dormant behavior in
the face of recompilation or modification of the source code?

• Are the results insightful?
– does REANIMATOR reveal behavior we would not see in

dynamic analysis?

Int. Secure Systems Lab
Vienna University of Technology

IEEE Symposium on Security & Privacy, May 17 2010 22

Accuracy

• To test accuracy and robustness of our system we
need a ground truth

• Dataset of 208 bots with source code
– thanks to Jon Oberheide and Michael Bailey from University

of Michigan

• Extract 6 genotype models from 1 bot
• Match against remaining 207 bot binaries

Int. Secure Systems Lab
Vienna University of Technology

IEEE Symposium on Security & Privacy, May 17 2010 23

Accuracy

• Even with source, manually verifying code similarity is
time-consuming

• Use a source code plagiarism detection tool
– MOSS

• We feed MOSS the source code corresponding to
each of the 6 behaviors
– match it against the other 207 bot sources
– MOSS returns a similarity score in percentage

• We expect REANIMATOR to match in cases where
MOSS returns high similarity scores

Int. Secure Systems Lab
Vienna University of Technology

IEEE Symposium on Security & Privacy, May 17 2010 24

MOSS Comparison

Int. Secure Systems Lab
Vienna University of Technology

IEEE Symposium on Security & Privacy, May 17 2010 25

MOSS Comparison

Potential False Negatives

Potential False Positives

Int. Secure Systems Lab
Vienna University of Technology

IEEE Symposium on Security & Privacy, May 17 2010 26

Accuracy Results

• We manually investigated the potential false positives
and false negatives

• Low false negative rate (~1.5%)
– mostly small genotypes

• No false positives
– genotype model match always corresponds to presence of

code implementing the behavior

• Also no false positives against dataset of ~2000
benign binaries
– binaries in system32 on a windows install

Int. Secure Systems Lab
Vienna University of Technology

IEEE Symposium on Security & Privacy, May 17 2010 27

Robustness

• Robustness results when re-compiling same source
• Robust against different compilation options (<7%

false negatives)
• Robust against different compiler versions
• Not robust against completely different compiler

(>80% false negatives)
– Visual Studio vs. Intel

• Some robustness to malware metamorphism was
demonstrated in [1]

Int. Secure Systems Lab
Vienna University of Technology

IEEE Symposium on Security & Privacy, May 17 2010 28

In-the-Wild Detection

• 10 genotype models extracted from 4 binaries
• 4 datasets

– irc_bots: 10238 IRC bots
– packed_bots: 4523 packed IRC bots
– pushdo: 77 pushdo binaries (dropper, typically drops spam

engine cutwail)
– allaple: 64 allaple binaries (network worm)

• Reanimator reveals a lot of functionality not observed
during dynamic analysis

Int. Secure Systems Lab
Vienna University of Technology

IEEE Symposium on Security & Privacy, May 17 2010 29

In-the-Wild Detection

B: Behavior observed in dynamic analysis.
S,D: Functionality detected by Reanimator

Int. Secure Systems Lab
Vienna University of Technology

IEEE Symposium on Security & Privacy, May 17 2010 30

Conclusions

• Identify security-relevant behavior during dynamic
analysis of a malware sample

• Automatically identify and model the code that is
responsible for that behavior

• Use these models to statically detect similar code in
other samples

• Our experiments demonstrate accuracy and
robustness

• Testing against in-the-wild datasets shows improved
detection of malicious functionality

Int. Secure Systems Lab
Vienna University of Technology

IEEE Symposium on Security & Privacy, May 17 2010 31

Questions?

	Internet Security 2
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

