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Motivation

• Malicious code (malware) at the root of many internet 
security problems
– ~50000 new samples each day!

• Automated dynamic analysis
– run samples in an instrumented sandbox

• Dynamic analysis provides limited coverage
– different behavior based on commands from C&C channel

• How can we learn more about malware samples?
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Our Approach

• Leverage code reuse between malware samples

• Automatically generate semantic-aware models of 
malicious behavior
– based on 1 execution of a behavior
– model 1 implementation of the behavior

• Use these models to statically detect the malicious 
functionality in samples that do not perform that 
behavior during dynamic analysis
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REANIMATOR

• Run malware in monitored environment and detect a 
malicious behavior (phenotype)

• Identify and model the code responsible for the 
malicious behavior  (genotype model)

• Match genotype model against other binaries
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Outline

• REANIMATOR: Identifying dormant functionality
– Dynamic behavior identification
– Extracting genotype models
– Finding dormant functionality

• Evaluation

• Conclusions
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REANIMATOR
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Dynamic Behavior Identification
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Dynamic Behavior Identification

• Run malware in instrumented sandbox 
– Anubis

• Dynamically detect a behavior B (phenotype)

• Map B to the set R
B
 of system/API call instances 

responsible for it

• R
B
 is the output of the behavior identification phase
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Behavior Detection Examples

• spam: send SMTP traffic on port 25 
– network level detection

• sniff: open promiscuous mode socket
– system call level detection

• rpcbind: attempt remote exploit against a specific 
vulnerability
– network level detection, with snort signature

• drop: drop and execute a binary 
– system call level detection, using data flow information

• ...
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Extracting Genotype Models
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Extracting Genotype Models

• Take as input the set R
B 
of relevant system/API calls

• Identify the code responsible for behavior B 
(genotype)

• Model the code responsible for behavior B (genotype 
model)

• The genotype model can then be statically, efficiently 
used for detecting the corresponding genotype and 
phenotype in other binaries that did not perform B 
during dynamic analysis
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Extracting Genotype Models: Goals

• Identified genotype should be precise and complete

• Complete: include all of the code implementing B 

• Precise: do not include code that is not specific to B 
(utility functions,..)
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Extracting Genotype Models: Steps

• Slicing: 
– obtain an initial set of instructions (genotype) ϕ that are 

related to R
B
  

• Filtering: 
– increase the precision of the genotype by removing from ϕ 

instructions that are not specific to B

• Germination: 
– increase the completeness of the model by adding 

instructions to ϕ
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Step 1: Slicing

• Start from relevant calls R
B 

• Include into slice ϕ instructions involved in:
– preparing input for calls in R

B

• follow data flow dependencies backwards from call inputs

– processing the outputs of calls in R
B

• follow data flow forward from call outputs

• We do not consider control-flow dependencies
– would lead to including too much code (taint explosion 

problem)
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Step 2: Filtering

• The slice ϕ is not precise
• General purpose utility functions executed as part of 

behavior are included (i.e: string processing)
– may be from statically linked libraries (i.e: libc) 
– genotype model would match against any binary that links 

to the same library

• Backwards slicing goes too far back: initialization and 
even unpacking routines are often included
– genotype model would match against any malware packed 

with the same packer
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Filtering Techniques

• Exclusive instructions: 
– set of instructions that manipulate tainted data every time 

they are executed
– utility functions are likely to be also invoked on untainted 

data

• Discard whitelisted code:
– whitelist obtained from other tasks or execution of the same 

sample, that do not perform B
– could also use foreign whitelist 

• i.e: including common libraries and unpacking routines
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Step 3: Germination

• The slice ϕ is not complete
• Auxiliary instructions are not included

– loop and stack operations, pointer arithmetic, etc

• Add instructions that cannot be executed without 
executing at least one instruction in ϕ

• Based on graph reachability analysis on the intra-
procedural Control Flow Graph (CFG)
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Finding Dormant Functionality
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Finding Dormant Functionality

• Genotype is a set of instructions

• Genotype model is its colored control flow graph (CFG)
– nodes colored based on instruction classes

• 2 models match if they share at least a K-Node subgraph 
(K=10)

• Use techniques from our previous work [1] to efficiently match 
a binary against a set of genotype models

• We use Anubis as a generic unpacker

[1] "Polymorphic Worm Detection Using Structural Information of 
Executables", RAID 2005
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Evaluation
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Evaluation

• Extract genotype models from a sample
• Match these genotypes against other samples
• Are the results accurate?

– when REANIMATOR detects a match, is there really the 
dormant behavior?

– how reliably does REANIMATOR detect dormant behavior in 
the face of recompilation or modification of the source code?

• Are the results insightful? 
– does REANIMATOR reveal behavior we would not see in 

dynamic analysis?
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Accuracy

• To test accuracy and robustness of our system we 
need a ground truth

• Dataset of 208 bots with source code
– thanks to Jon Oberheide and Michael Bailey from University 

of Michigan 

• Extract 6 genotype models from 1 bot
• Match against remaining 207 bot binaries
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Accuracy

• Even with source, manually verifying code similarity is 
time-consuming

• Use a source code plagiarism detection tool
– MOSS 

• We feed MOSS the source code corresponding to 
each of the 6 behaviors
– match it against the other 207 bot sources
– MOSS returns a similarity score in percentage

• We expect REANIMATOR to match in cases where 
MOSS returns high similarity scores 
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MOSS Comparison
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MOSS Comparison

Potential False Negatives

Potential False Positives
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Accuracy Results

• We manually investigated the potential false positives 
and false negatives

• Low false negative rate (~1.5%)
– mostly small genotypes

• No false positives
– genotype model match always corresponds to presence of 

code implementing the behavior

• Also no false positives against dataset of ~2000 
benign binaries
– binaries in system32 on a windows install
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Robustness

• Robustness results when re-compiling same source
• Robust against different compilation options (<7% 

false negatives)
• Robust against different compiler versions
• Not robust against completely different compiler 

(>80% false negatives)
– Visual Studio vs. Intel 

• Some robustness to malware metamorphism was 
demonstrated in [1]
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In-the-Wild Detection

• 10 genotype models extracted from 4 binaries
• 4 datasets

– irc_bots: 10238 IRC bots
– packed_bots: 4523 packed IRC bots
– pushdo: 77 pushdo binaries (dropper, typically drops spam 

engine cutwail)
– allaple: 64 allaple binaries (network worm)

• Reanimator reveals a lot of functionality not observed 
during dynamic analysis
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In-the-Wild Detection

B: Behavior observed in dynamic analysis.    
S,D: Functionality detected by Reanimator
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Conclusions

• Identify security-relevant behavior during dynamic 
analysis of a malware sample

• Automatically identify and model the code that is 
responsible for that behavior

• Use these models to statically detect similar code in 
other samples

• Our experiments demonstrate accuracy and 
robustness

• Testing against in-the-wild datasets shows improved 
detection of malicious functionality
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Questions?
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