
1

TrustVisor: Efficient TCB
Reduction and Attestation

Jonathan M. McCune,
Yanlin Li, Ning Qu, Zongwei Zhou,

Anupam Datta, Virgil Gligor, Adrian Perrig

May 17, 2010

2

Motivating Example

•  Conscientious web server admin / dev
•  Wants to protect most critical data

– SSL private key, password file, ACL, …
•  Evaluates low-cost options
•  Her best efforts rest on a

house of cards…

Challenge: Reducing the Trusted
Computing Base

•  Today’s OSes have too much power
•  Total access to application data

•  App may require little OS support
–  Self-contained computation ‘S’

•  Trusted computing base for S includes majority of:
OS, drivers, and privileged applications!!!

OS Kernel
(ring 0)

App
(ring 3)

Hardware

OS

App
App 1… S

Device
Driver

1

Device
Driver

2

Kernel
Module

1

Kernel
Module

2

Kernel
Module

l

Device
Driver

m

3

What is S?
•  Self-contained code in an application
•  Data secrecy and integrity requirements
•  General-purpose computing
•  Some examples

– Manages a private key for web server or CA
– Manages Access Control List (ACL)
–  Is a compute client in distributed setting
–  Is similar to a Flicker session [McPaPeReIs2008]

4

Outline
•  Motivation (done)
•  High-Level Overview
•  Detailed Description
•  Prototype: Apache + SSL
•  Limitations
•  Summary & Conclusions

5

Meet TrustVisor
•  Tiny hypervisor for isolation of code S

– No scheduling or Inter-Process Communication
•  Efficient transitions between OS and S
•  External verification of Output = S(Input)
•  Protected storage for S

6

Untrusted

Trusted

Attestable

OS
white

HW

App App

TrustVisor

S

V

2

7

External Verification: Attestation
What code are
you running?

TrustVisor

S Inputs
Outputs Sign () , K-1 KTPM, K-1

•  Trust in attestation rooted in hardware TPM
(Trusted Platform Module)

•  SSL-enabled web server scenario:
–  Client can evaluate server before sending data
–  Enables more meaningful SSL server validation

Verifier Target
Protected Storage

•  Initially, S is “red” (untrusted)
•  App can register S “blue” (attestable)
•  TV enables “blue” code to protect data…

8

App
n

TrustVisor

OS

App
1 … S

S
µTPM

•  Access-controlled by
identity of S (hash)

•  Enabled by TPM-like
Sealed Storage

•  “Micro-TPM” in software

Alternative Approaches

9

TrustVisor runtime TCB in lines of code:
•  ~6500 C/ASM + ~2800 Headers
•  Hypervisor + crypto

Metric
Approach

TCB Size
(LoC)

Protection
granularity Performance

Monolithic kernel millions – best

Virtualization millions VM good

Virtual TPM (vTPM) millions consistent code good

Overshadow etc. millions process good

Security / µ kernel ~100K process moderate

Flicker <1K fine poor

TrustVisor <10K fine good

Outline
•  Motivation (done)
•  High-Level Overview (done)
•  Detailed Description
•  Prototype: Apache + SSL
•  Limitations
•  Summary & Conclusions

10

App
n

TrustVisor OS Architecture

11

CPU, RAM
Chipset

DMA Devices
(Network, Disk,

 USB, etc.)

OS

App
1 …

TPM

Device
Drivers White TrustVisor TPM

Driver

Locality 2 Locality 1

TrustVisor:
•  Virtualizes RAM, CPU
•  Restricts DMA
•  Restricts TPM to

Locality 1

Hardware

App
n

TrustVisor S Architecture

12

TrustVisor

OS

App
1 … S

S
µTPM

S
State

TrustVisor API
•  Registration
•  Invocation
•  Micro-TPM

CPU, RAM
Chipset

DMA Devices
(Network, Disk,

 USB, etc.)
TPM

3

Identifying S to TrustVisor

•  Applications identify S via registration
– Page-level protection granularity

•  Applications make “normal” function calls
– TrustVisor detects switch to S via traps

•  S runs with no access to legacy OS
– One set of Inputs and Outputs per invocation

13

Sensitive Code Timeline

14

In
iti

ali
ze

 Tr
us

tV
iso

r

App
lic

at
io

n
St

ar
ts

Reg
ist

er
 S

In

vo
ke

 S
: S

SL
 S

es
sio

n
In

it

S
Com

pl
et

e:
 S

es
sio

n
ac

tiv
e

Unr
eg

ist
er

 S

App
lic

at
io

n
Ex

its

…

S’s Runtime State
Protected

Multiple invocations during
a single registration cycle

In
vo

ke
 S

: S
SL

 S
es

sio
n

In
it

S
Com

pl
et

e:
 S

es
sio

n
ac

tiv
e

Micro-TPM Design
•  Small subset of hardware TPM operations for:

–  Protected Storage + External Verification
•  TPMs are optimized for cost, not speed
•  TrustVisor implements critical-path TPM

operations in software on main CPU
–  Extend, Seal, Unseal, Quote, GetRand
–  Reduces latency by orders of magnitude

•  Trust in Micro-TPM still rooted in hardware TPM
•  Infrequent TPM operations do not require

virtualization

15

Outline
•  Motivation (done)
•  High-Level Overview (done)
•  Detailed Description (done)
•  Prototype: Apache + SSL
•  Limitations
•  Summary & Conclusions

16

Example App: Apache + SSL
•  Goal: Protect long-term private key KSSL

-1

– Cert revocation is abysmal in practice
•  Desired properties

– Malware, malicious admin unable to learn KSSL
-1

– Externally verifiable configuration
•  Two sensitive code modules (S)

– S1: Generate and seal the long-term key (rare)
– S2: Unseal and use the key during SSL session

establishment (frequent)

17

0

0.2

0.4

0.6

0.8

1

200 txns

Vanilla Linux
TrustVisor only
TrustVisor + S

Apache + SSL Performance
•  ‘ab’ with 10,000 txns / trial, avg 10 trials

18

Normalized to
Vanilla Linux

(higher is better)

Context
Switching

Memory
Virt.

200 Concurrent
Transactions

4

Outline
•  Motivation (done)
•  High-Level Overview (done)
•  Detailed Description (done)
•  Prototype: Apache + SSL (done)
•  Limitations
•  Summary & Conclusions

19

Limitations
•  Design-level

– Does not currently provide trusted path to user
– Requires application awareness

•  Prototype-level
– No SMP support (currently single CPU)
– Only protects KSSL

-1
– Executable code for S must be proactively

paged into memory before registration
– AMD-only

20

Summary & Conclusions
•  Tiny hypervisor to support isolation
•  Externally verifiable via attestation
•  Frequent TPM operations in software
•  Compelling performance argument
•  Requires no OS changes
•  Conclusions

–  Interesting point in the design space
– Foundation for future trustworthy systems

21

Q & A
•  Thank you!

•  jonmccune@cmu.edu
•  http://www.ece.cmu.edu/~jmmccune

22

