
5/20/2010

1

Towards Static Flow-based
Declassification for Legacy and

Untrusted Programs

Bruno P. S. Rocha

Sruthi Bandhakavi

Jerry den Hartog

William H. Winsborough

Sandro Etalle

IEEE Symposium on Security and Privacy 2010
(Oakland’10)

1

Introduction

• Language-based information flow aims to
analyze programs with respect to flow of
information between channels of different
security levels

• Non-interference is a formal property for
specifying valid flows (Goguen & Meseguer
1982)

2

Non-interference

Program

Public Input
Private Input

Public Output

Change in the public input can change the outputChange in the private input should not change the output

3

Declassification

• Non-interference is not enough for most
practical applications

• In many occasions, it is necessary to
downgrade the security level of specific data
i.e., to declassify that data

• Classic examples:
– Average salary

– Password verification

– Encryption

4

Security-typed languages

• Common approach (Jif)
• Variables have security types
• Compilation-time analysis rejects programs which

contain insecure flows
• Declassification is usually associated with specific

points in the code, and done explicitly via some
declass command
– Declassification policy is code-dependant

• Problem: implies that programmer is trusted, and
understands security labeling of variables

5

Example: Jif

Static labels + declassification:
int{Alice:;Alice←*} b;
int{Alice:Bob;Alice←*} y = 0;
if (b) {

// pc is at level {Alice:;Alice←*} at this point.
declassify ({Alice:;Alice←*} to {y}) {

// at this point, pc has been declassified to the label of the local
// variable y (that is, {Alice:Bob;Alice←*}) permitting the
// assignment to y
y = 1;

}
}

Dynamic labels:
int{*lbl} m{*lbl}(label{*lbl} lbl, principal{*lbl} p, int{Alice:p} i)

where {Alice:Bob} <= lbl, Bob actsfor p
{

// since Bob actsfor p, {Alice:p} <= {Alice:Bob},
// and since {Alice:Bob} <= lbl, the label of the argument I
// is <= {*lbl}. Therefore, we can return i+1.
return i+1;

}

6

5/20/2010

2

Non security-typed approaches

• Dataflow analysis are techniques which do
not rely on annotated code

– Do not provide declassification

– Have issues analyzing control-flow dependencies

• Taint analysis also works on unannotated
code, but suffers from the same problems of
dataflow analysis + is often too restrictive

7

Our contribution

• We aim for a static flow-based analysis that
provides 3 key points:
1. Analysis of programming code without any security-

based annotations (therefore, untrusted code)
2. Support for user-defined declassification policies
3. Having code and policy separated and independent

from each other

• Individual solutions do exist
– The true challenge lies in a combined solution

• A first-step in a new direction for information
flow analysis

8

The core analysis process

1. Identify I/O operations

2. Extract expressions on inputs

3. Check if expressions are recognized by policy

Program

Policy

α β

γ δ

}2,{

0mod

0

00

kkj

n

i

i

n

expression recognizer

Match?

9

Policy Representation

Sets of expressions are represented by graphs

α *1length

α 0

*1 *2 *3add2

ϕ2

add1

ϕ1

Nodes labels with input channels, constant
values or wildcard characters

Certain nodes are marked as final nodes

Loop expressions can also be expressed

Represents the expression set:
{0, (0 + α1), (0 + α1 + α2), …..}

A separated restriction (not discussed
here) guarantees that indexes on α are
unique

10

Code analysis – Step 1: Preprocessing
Operators are converted to method calls, nested expressions
are converted to a series of assignments to temp variables

sum := 0; i := 0;

len := length(α);

while (i <= len) do

val := α ;

sum := sum + val;

i := i + 1;

avg := sum / len ;

γ := avg;

sum := 0; i := 0;

len := length(α);

c := leq(i,len);

while (c) do

val := α ;

sum := add(sum,val);

i := add(i,1);

c := leq(i,len);

avg := div(sum,len);

γ := avg;
11

Step 2: Static Single Assignment (SSA)
Format

sum1 := 0; i1 := 0;
len1 := length(α);
c1 := leq(i1, len1);

while (c3 := ϕc3(c1, c2);

sum3 := ϕc3(sum1, sum2);

i3 := ϕc3(i1, i2);

c3) do

val1 := α ;

sum2 := add(sum3, val1);

i2 := add(i3, 1);

c2 := leq(i2, len1);

avg1 := div(sum3, len1);

γ := avg1;

sum := 0; i := 0;

len := length(α);

c := leq(i, len) ;

while (c) do

val := α ;

sum := add(sum, val);

i := add(i, 1);

c := leq(I,len);

avg := div(sum, len) ;

γ := avg;

Every variable is defined only once &
Phi functions are declared to keep
track of assignments in branching
statements 12

5/20/2010

3

Step 3: Program Expression Graph
sum1 := 0; i1 := 0;

len1 := length(α);

c1 := leq(i1, len1);

while (c3 := ϕc3(c1, c2);

sum3 := ϕc3(sum1, sum2);

i3 := ϕc3(i1, i2); c3) do

val1 := α ;

sum2 := add(sum3, val1);

i2 := add(i3, 1);

c2 := leq(i2, len1);

avg1 := div(sum3, len1);

γ := avg1;
Expression graph for γ

α len1
avg1

val1 sum2 sum3

sum10

c3

length div2

div1

add1

add2

ϕ2

ϕ1

ctrl

γ

13

Step 4: Policy Matching

Expression graph for γ
(control dep. omitted)

α len1
avg1

val1 sum2
sum3

sum10

length div2

div1

add1

add2

ϕ2

ϕ1

γ

Policy graphs

α 0

*1 *2 *3
add2

ϕ2

add1

ϕ1

α *1length

c3ctrl
Control dependency
needs to be green

14

Revisiting the security property

Program

Private Input

Public Output

Public Input

Declassification policies split the
domain into different parts each of
which are indistinguishable

15

Policy Controlled Release (PCR)
Private Input

R
Revealed Knowledge(R) : Given an
environment, π, and a declassification policy, d, R is
the set of all environments for which the value of the
declassifiable expressions is the same.

Observed Knowledge(K) : Given an environment, π, and declassification
policy, d, K is the set of all environments which produce the same
sequence of visible outputs as π. The observer cannot distinguish between
environments in K.

Policy Controlled Release Theorem: If the program satisfies PCR, then the
knowledge obtained from observing the program (K) is bound by the
information released by the declassification policy (R). That is, .RK

16

Did I mention “towards” something?

• Assumptions that can be relaxed:
– We use a simple toy language, that lacks:

• More control-flow commands such as break, case, etc.
(easy)

• User-defined functions, object orientation (currently
working on it)

• Arrays and pointers (SSA solution for these helps a lot)

– Matching mechanism is currently defined
mathematically: algorithms are under way

– Some operational issues still untreated:
• Enforcing how many times a given loop runs
• Algebraic equivalence of expressions denoted by the graphs

i.e., add(x,y) = add(y,x)

17

Thank you!

Questions?

18

