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Fuzzing/Fuzz Testing

� Feed target applications with malformed inputs 
e.g., invalid, unexpected, or random test cases
� Proven to be remarkably successful
� E.g., randomly mutate well-formed inputs and runs 

the target application with the “mutations”

ApplicationFuzzer crash
Malformed 

Input
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Fuzzing is great
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However…
Introduction TaintScope Conclusion

In the best case, malformed 
inputs will explore different 
program paths, and trigger 
security vulnerabilities

A quick example

� Malformed images will be dropped when the decoder 
function detects checksums mismatch
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� Malformed images will be dropped when the de

1 void decode_image(FILE* fd){
2 ...
3 int length = get_length(fd);
4 int recomputed_chksum = checksum(fd, length);
5 int chksum_in_file = get_checksum(fd);
//line 6 is used to check the integrity of inputs
6 if(chksum_in_file != recomputed_chksum)
7   error();
8 int Width = get_width(fd);
9 int Height = get_height(fd);
10 int size = Width*Height*sizeof(int);//integer overflow
11 int* p = malloc(size);
12 ...

re-compute a new 
checksum

read the attached 
checksum

compare tow values
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Checksum: the bottleneck
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Checksum is a common way to test the integrity 
of input data
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if(checksum(Data)!= Chksum)

Most mutations are blocked 
at the checksum test point



Our motivation

� Penetrate checksum checks!
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Our Goal
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Intuition 

� Disable checksum checks by control flow alteration

� Fuzz the modified program
� Repair the checksum fields in malformed inputs 

that can crash the modified program
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if(checksum(Data)!= Chksum)
goto L1;
exit();

L1:
continue();

Original programModified program
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Key Questions 

� Q1: How to locate the checksum test 
instructions in a binary program?

� Q2: How to effectively and efficiently fuzz for 
security vulnerability detection?

� Q3: How to generate the correct checksum 
value for the invalid inputs that can crash the 
modified program?
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TaintScope Overview
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Execution Monitor

Checksum 
Locator

Directed 
Fuzzer

Checksum 
Repairer

Modified 
Program

Hot Bytes InfoInstruction
Profile

Crashed
Samples

Reports

Q1 Q2 Q3

A1: Locate the checksum test instruction

11Introduction TaintScope Conclusion

Checksum is usually used to protect a large number 
of input bytes

if(checksum(Data) !=   Chksum)
Data Chksum

Key Observation 1

� Based on fine-grained taint analysis, we first find the 
conditional jump instructions (e.g., , ) that depend 
on more than a certain number of input bytes

� Take these conditional jump instructions as candidates

A1: Locate the checksum test instruction

Key Observation 2
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Well-formed inputs can pass the checksum test, 
but most malformed inputs cannot

� We log the behaviors  of candidate 
conditional jump instructions



A1: Locate the checksum test instruction

Key Observation 2
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Well-formed inputs can pass the checksum test, 
but most malformed inputs cannot

� We log the behaviors  of candidate 
conditional jump instructions
Run well-formed inputs, identify the 
always-taken and always-not-taken insts

A1: Locate the checksum test instruction

Key Observation 2
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Well-formed inputs can pass the checksum test, 
but most malformed inputs cannot

� We log the behaviors  of candidate 
conditional jump instructions
Run well-formed inputs, identify the 
always-taken and always-not-taken insts
Run malformed inputs, also identify the 
always-taken and always-not-taken insts

A1: Locate the checksum test instruction

Key Observation 2
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Well-formed inputs can pass the checksum test, 
but most malformed inputs cannot

� We log the behaviors  of candidate 
conditional jump instructions
Run well-formed inputs, identify the 
always-taken and always-not-taken insts
Run malformed inputs, also identify the 
always-taken and always-not-taken insts
Identify the conditional jump inst that 
behaves completely different when 
processing well-formed and malformed 
inputs

A2: Effective and efficient fuzzing 
� Blindly mutating will create huge amount of redundant test 

cases --- ineffective and inefficient  

� Directed fuzzing:  focus on modifying the “hot bytes” that 
refer to the input bytes flow into critical system/library calls
� Memory allocation, string operation…
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1 void decode_image(FILE* fd){
2 ...

...
6 if(chksum_in_file != recomputed_chksu

goto 8;
7   error();
8 int Width = get_width(fd);
9 int Height = get_height(fd);
10 int size = Width*Height*sizeof(int);//integer overflow
11 int* p = malloc(size);
12 …

Directly modifying “width” or “height" 
fields will trigger the bug easily 

A3: Generate the correct checksum

� The classical solution is symbolic execution 
and constraint solving

� We use combined concrete/symbolic execution
� Only leave the bytes in the checksum field as symbolic values
� Collect and solve the trace constraints on Chksum when reaching the 

checksum test inst.
� Note that:

� checksum(Data) is a runtime determinable constant value.
� Chksum originates from the checksum field, but may be transformed, such 

as  from hex/oct to dec number, from little-endian to big-endian.
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Solving checksum(Data)== Chksum is hard or 
impossible, if both Data andChksum are symbolic values
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Design Summary

� Directed Fuzzing
� Identify and modify “hot bytes” in valid inputs to 

generate malformed inputs
� On top of PIN binary instrumentation platform

� Checksum-aware Fuzzing
� Locate checksum check points and checksum fields. 
� Modify the program to accept all kinds input data
� Generate correct checksum fields for malformed 

inputs that can crash the modified program
� Offline symbolically execute the trace, using STP solver
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Evaluation

� Component evaluation
� E1:  Whether TaintScope can locate checksum 

points and checksum fields?
� E2:  How many hot byte in a valid input?
� E3: Whether TaintScope can generate a correct 

checksum field?
� Overall evaluation

� E4: Whether TaintScope can detect previous 
unknown vulnerabilities in real-world applications?
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Evaluation 1: locate checksum points

� We test several common checksum algorithms, including 
CRC32, MD5, Adler32. TaintScope accurately  located the 
check statements.
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Evaluation 2: identify hot bytes

� We measured the number of bytes could affect the size 
arguments in memory allocation functions
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Evaluation 3: generate correct checksum 
fields
� We test malformed inputs in four kinds of file 

formats.
� TaintScope is able to generate correct checksum 

fields.
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Evaluation 4 :  27 previous unknown vulns
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MS Paint Google Picasa Adobe Acrobat ImageMagick

irfanview gstreamer Winamp XEmacs

Amaya dillo wxWidgets PDFlib

Evaluation 4 :  27 previous unknown vulns
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Evaluation 4:  27 previous unknown vulns
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Conclusion

� Checksum is a big challenge for fuzzing tools
� TaintScope can perform: 

� Directed fuzzing
� Identify which bytes flow into system/library calls.
� dramatically reduce the mutation space.

� Checksum-aware fuzzing
� Disable checksum checks by control flow alternation.
� Generate correct checksum fields in invalid inputs.

� TaintScope detected dozens of serious  
previous unknown vulnerabilities.
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Thanks for your attention!


