
TaintScope: A Checksum-Aware
Directed Fuzzing Tool for Automatic
Software Vulnerability Detection

Tielei Wang1, Tao Wei1, Guofei Gu2, Wei Zou1

1Peking University, China
2Texas A&M University, US

31st IEEE Symposium on Security & Privacy Outline

� Introduction
� Background
� Motivation

� TaintScope
� Intuition
� System Design
� Evaluation

� Conclusion

2

......

Fuzzing/Fuzz Testing

� Feed target applications with malformed inputs
e.g., invalid, unexpected, or random test cases
� Proven to be remarkably successful
� E.g., randomly mutate well-formed inputs and runs

the target application with the “mutations”

ApplicationFuzzer crash
Malformed

Input

3Introduction TaintScope Conclusion

Fuzzing is great

4

However…
Introduction TaintScope Conclusion

In the best case, malformed
inputs will explore different
program paths, and trigger
security vulnerabilities

A quick example

� Malformed images will be dropped when the decoder
function detects checksums mismatch

5

� Malformed images will be dropped when the de

1 void decode_image(FILE* fd){
2 ...
3 int length = get_length(fd);
4 int recomputed_chksum = checksum(fd, length);
5 int chksum_in_file = get_checksum(fd);
//line 6 is used to check the integrity of inputs
6 if(chksum_in_file != recomputed_chksum)
7 error();
8 int Width = get_width(fd);
9 int Height = get_height(fd);
10 int size = Width*Height*sizeof(int);//integer overflow
11 int* p = malloc(size);
12 ...

re-compute a new
checksum

read the attached
checksum

compare tow values

Introduction TaintScope Conclusion

Checksum: the bottleneck

6

Checksum is a common way to test the integrity
of input data

Introduction TaintScope Conclusion

if(checksum(Data)!= Chksum)

Most mutations are blocked
at the checksum test point

Our motivation

� Penetrate checksum checks!

7

Our Goal

Introduction TaintScope Conclusion

Intuition

� Disable checksum checks by control flow alteration

� Fuzz the modified program
� Repair the checksum fields in malformed inputs

that can crash the modified program

8

if(checksum(Data)!= Chksum)
goto L1;
exit();

L1:
continue();

Original programModified program

Introduction TaintScope Conclusion

Key Questions

� Q1: How to locate the checksum test
instructions in a binary program?

� Q2: How to effectively and efficiently fuzz for
security vulnerability detection?

� Q3: How to generate the correct checksum
value for the invalid inputs that can crash the
modified program?

9Introduction TaintScope Conclusion

TaintScope Overview

10

Execution Monitor

Checksum
Locator

Directed
Fuzzer

Checksum
Repairer

Modified
Program

Hot Bytes InfoInstruction
Profile

Crashed
Samples

Reports

Q1 Q2 Q3

A1: Locate the checksum test instruction

11Introduction TaintScope Conclusion

Checksum is usually used to protect a large number
of input bytes

if(checksum(Data) != Chksum)
Data Chksum

Key Observation 1

� Based on fine-grained taint analysis, we first find the
conditional jump instructions (e.g., ,) that depend
on more than a certain number of input bytes

� Take these conditional jump instructions as candidates

A1: Locate the checksum test instruction

Key Observation 2

12Introduction TaintScope Conclusion

Well-formed inputs can pass the checksum test,
but most malformed inputs cannot

� We log the behaviors of candidate
conditional jump instructions

A1: Locate the checksum test instruction

Key Observation 2

13Introduction TaintScope Conclusion

Well-formed inputs can pass the checksum test,
but most malformed inputs cannot

� We log the behaviors of candidate
conditional jump instructions
Run well-formed inputs, identify the
always-taken and always-not-taken insts

A1: Locate the checksum test instruction

Key Observation 2

14Introduction TaintScope Conclusion

Well-formed inputs can pass the checksum test,
but most malformed inputs cannot

� We log the behaviors of candidate
conditional jump instructions
Run well-formed inputs, identify the
always-taken and always-not-taken insts
Run malformed inputs, also identify the
always-taken and always-not-taken insts

A1: Locate the checksum test instruction

Key Observation 2

15Introduction TaintScope Conclusion

Well-formed inputs can pass the checksum test,
but most malformed inputs cannot

� We log the behaviors of candidate
conditional jump instructions
Run well-formed inputs, identify the
always-taken and always-not-taken insts
Run malformed inputs, also identify the
always-taken and always-not-taken insts
Identify the conditional jump inst that
behaves completely different when
processing well-formed and malformed
inputs

A2: Effective and efficient fuzzing
� Blindly mutating will create huge amount of redundant test

cases --- ineffective and inefficient

� Directed fuzzing: focus on modifying the “hot bytes” that
refer to the input bytes flow into critical system/library calls
� Memory allocation, string operation…

16Introduction TaintScope Conclusion

1 void decode_image(FILE* fd){
2 ...

...
6 if(chksum_in_file != recomputed_chksu

goto 8;
7 error();
8 int Width = get_width(fd);
9 int Height = get_height(fd);
10 int size = Width*Height*sizeof(int);//integer overflow
11 int* p = malloc(size);
12 …

Directly modifying “width” or “height"
fields will trigger the bug easily

A3: Generate the correct checksum

� The classical solution is symbolic execution
and constraint solving

� We use combined concrete/symbolic execution
� Only leave the bytes in the checksum field as symbolic values
� Collect and solve the trace constraints on Chksum when reaching the

checksum test inst.
� Note that:

� checksum(Data) is a runtime determinable constant value.
� Chksum originates from the checksum field, but may be transformed, such

as from hex/oct to dec number, from little-endian to big-endian.

17

Solving checksum(Data)== Chksum is hard or
impossible, if both Data andChksum are symbolic values

Introduction TaintScope Conclusion

Design Summary

� Directed Fuzzing
� Identify and modify “hot bytes” in valid inputs to

generate malformed inputs
� On top of PIN binary instrumentation platform

� Checksum-aware Fuzzing
� Locate checksum check points and checksum fields.
� Modify the program to accept all kinds input data
� Generate correct checksum fields for malformed

inputs that can crash the modified program
� Offline symbolically execute the trace, using STP solver

18Introduction TaintScope Conclusion

Evaluation

� Component evaluation
� E1: Whether TaintScope can locate checksum

points and checksum fields?
� E2: How many hot byte in a valid input?
� E3: Whether TaintScope can generate a correct

checksum field?
� Overall evaluation

� E4: Whether TaintScope can detect previous
unknown vulnerabilities in real-world applications?

19Introduction TaintScope Conclusion

Evaluation 1: locate checksum points

� We test several common checksum algorithms, including
CRC32, MD5, Adler32. TaintScope accurately located the
check statements.

20Introduction TaintScope Conclusion

Evaluation 2: identify hot bytes

� We measured the number of bytes could affect the size
arguments in memory allocation functions

21Introduction TaintScope Conclusion

Evaluation 3: generate correct checksum
fields
� We test malformed inputs in four kinds of file

formats.
� TaintScope is able to generate correct checksum

fields.

22Introduction TaintScope Conclusion

Evaluation 4 : 27 previous unknown vulns

23Introduction TaintScope Conclusion

MS Paint Google Picasa Adobe Acrobat ImageMagick

irfanview gstreamer Winamp XEmacs

Amaya dillo wxWidgets PDFlib

Evaluation 4 : 27 previous unknown vulns

24

Evaluation 4: 27 previous unknown vulns

25Introduction TaintScope Conclusion

Conclusion

� Checksum is a big challenge for fuzzing tools
� TaintScope can perform:

� Directed fuzzing
� Identify which bytes flow into system/library calls.
� dramatically reduce the mutation space.

� Checksum-aware fuzzing
� Disable checksum checks by control flow alternation.
� Generate correct checksum fields in invalid inputs.

� TaintScope detected dozens of serious
previous unknown vulnerabilities.

26Introduction TaintScope Conclusion

Thanks for your attention!

