All You Ever Wanted to Know About
Dynamic Taint Analysis
&
Forward Symbolic Execution
(but might have been afraid to ask)

(Yes, we were trying to overflow the title length field
on the submission server)

Edward J. Schwartz, Thanassis Avgerinos, David Brumley

5/19/2010 CarnegieMellon University 1

The Root of All Evil

Humans write programs

WEIRD — MY CODES CRASHING
WHEN GIVEN PRE-1970 DATES.

EPOCH FAIL

dé

This Talk:

Computers Analyzing Programs Dynamically at
Runtime

CarnegieMellon University

5/19/2010

Our Contributions

1: Turn English
descriptionsinto an
algorithm
— Operational

Dynamic Taint Analysis: Semantics

Is this value affected by user input? 2: Algorithm highlights

caveats, issues, and

unsolved problems
that are deceptively

Computers Analyzing Programs

Dynamically at Runtime

Forward Symbolic Execution:
What input will make execution
reach this line of code? hard

5/19/2010 CarnegieMellon University 5

19/5/2010

A Few Things You Need to Know About
Dynamic Taint Analysis
&
Forward Symbolic Execution
(but might have been afraid to ask)

Edward J.Schwartz, Thanassis Avgerinos, David Brumley

5/19/2010 CarnegieMellon University 2

Two Essential Runtime Analyses

Detect Exploits Detect
[Costa2005 Crandall2005, = packing in malware
Newsome2005,5uh2004] - [Bayer2009,¥in2007]

- - 10]

Dynamic Taint Analysis:
What values are derived from user input?

Automated Test Case
Generation
[Cadar2008,Godefroid2005 Sen2005]

Input Filter Generation
[costa2007 Brumley2008]

Forward Symbolic Execution:
What input will make execution reach this line of code? §

5/19/2010 CarnegieMellon University)

Our Contributions (cont’d)

3: Systematize recurring themes in a wealth of
previous work

5/19/2010 CarnegieMellon University 6

Dynamic Taint Analysis:
What values are derived from user input?
1. How it works—example

2. Desired properties

3. Example issue. Paper has many more.

5/19/2010 CarnegieMellon University 7

. tainted . untainted A

Var Val
. get_ |nput)

- O-®+ ; /

49

Data derived from
user input is tainted

goto vy

T
TaintPropagation Var | Tainted?

t1=1x1], t2 = 1[x2]

BinOp X T
X1+ X2 tiv t2 v T
5/19/2010 CarnegieMellon University 9
Real Use:

. = get_input(&)

Exploit Detection

b

Jumping to

overwritten strcpy(bufferargv[1]) ;

return address

return ;

5/19/2010 CarnegieMellon University 11

19/5/2010

. tainted . untainted A
. Var | val
- .=get_input(&) _var_|
y=x + 42 X 7
;oto v Input is tainted
T

TaintIntroduction

t = IsUntrusted(src)

Var | Tainted?

Input X T
P get_input(src)d t
5/19/2010 Carnegie Mellon University 8
. tainted . untainted A
oy Var | Val
.=get_input» +)
X 7
= +
e @ s
Policy Violation
‘ goto . Detected
v
TaintChecking Var | Tainted?
Pgoto(ta) =-ta X T
(Must be true to execute) Yy T
Memory Load
Variables Memory
A .
Var Val Addr| Val
X 7 7 42
v o W
Var | Tainted? Addr| Tainted?
X T 7 F
5/19/2010 CarnegieMellon University 12

Problem: Memory Addresses

Wy A Var | Val
@ - get_input("&.‘) X 7
- ®)

y =load

Addr| Val

All values derived 7 42
from userinput .
are tainted?? Addr| Tainted?
—

7 F

5/19/2010 CarnegieMellon University 13

If either the address or the memory
cell istainted, then the valueis tainted

Policy 2:

Address
expression
is tainted

Overtainting

Unaffected values are tainted

printa

- e.g., exploits on safe inputs printb

TaintPropagation
v=A[X], t = tu[v], ta=1[X]
load(x) J tvta

5/19/2010 CarnegieMellon University 15

Load

Forward Symbolic Execution:

What input will make execution reach this line of code?

* Howitworks—example
* Inherent problems of symbolic execution

* Proposed solutions

5/19/2010 CarnegieMellon University 17

19/5/2010

PO”CV 1: mint dependsonly on the memory cell

:&u‘ A Var | Val
’ =get_i X 7
»W - Undertainting

Failing to identify tainted values Addr| Val
- e.g., missing exploits
7 42

Addr| Tainted?

v=AK, t=nl T

Load

load(x) J t 7 F

5/19/2010 CarnegieMellon University 14

Research Challenge
State-of-the-Art is not perfect for all

programs
Policy may wrongly

Undertainting:
Policy may miss taint detect taint

5/19/2010 CarnegieMellon University 16

Overtainting:

The Challenge

bad_abs(x is input)
if (x < 0) then
232 possible return -x
inputs if (x = 0x12345678) then
return -x
return x

0x12345678

Forward Symbolic Execution:
What input will make execution
reach this line of code?

5/19/2010 CarnegieMellon University 18

A Simple Example

x symbolic
can have Interpreterput)
What input will "V value
make execution
reach this line of
code?

Interpreter

return x return -x

x20A x20A
x 1= 0x12345678 x == 0x12345678

5/19/2010

CarnegieMellon University 19

Path Selection Heuristics

Symbolic Execution
Tree

However, these are heuristics. In the worst case all create an
exponential number of formulas in the tree height.

* Depth-First Search (bounded) ,Random Search [cadar2008]
* Concolic Testing [Sen2005,Godefroid2008]

5/19/2010

Other Important Issues

b Formalization- - et
B e [- .:E,-
°

@ -0
L]

FORWARD SYMBOLIC EXECUTION - More

e complex
Symbolic lumps policies

L X J
<D = —
*® &
AN J
Y
5/19/2010 CarnegieMellon University 23

One Problem:
Exponential Blowup Due to Branches

@) Interpreter A Branch 1

Branch 2

A B W
dodbobed
Y

Exponential Number of Interpreters/formulas in # of branches

5/19/2010 CarnegieMellon University 20

Symbolic Execution is not Easy

* Exponential number of interpreters/formulas

e T m

* Exponentially-sizedformulas

substitution === @

* Solvingaformulais NP-Complete!

5/19/2010 CarnegieMellon University 22

Conclusion

* Dynamic taint analysis and forward symbolic
execution used extensivelyin literature

— Formal algorithm and what is done for each possible
step of execution often not emphasized

* We provided a formal definition and summarized
— Critical issues
— State-of-the-art solutions
— Common tradeoffs

5/19/2010 CarnegieMellon University 24

19/5/2010

19/5/2010

Thank You!

thanassis@cmu.edu

Questions?

