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The Root of All Evil

Humans write programs

WEIRD — MY CODES CRASHING
WHEN GIVEN PRE-1970 DATES.

EPOCH FAIL

dé

This Talk:

Computers Analyzing Programs Dynamically at
Runtime

CarnegieMellon University

5/19/2010

Our Contributions

1: Turn English
descriptionsinto an
algorithm
— Operational

Dynamic Taint Analysis: Semantics

Is this value affected by user input? 2: Algorithm highlights

caveats, issues, and

unsolved problems
that are deceptively

Computers Analyzing Programs

Dynamically at Runtime

Forward Symbolic Execution:
What input will make execution
reach this line of code? hard
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A Few Things You Need to Know About
Dynamic Taint Analysis
&
Forward Symbolic Execution
(but might have been afraid to ask)

Edward J.Schwartz, Thanassis Avgerinos, David Brumley
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Two Essential Runtime Analyses

Detect Exploits Detect
[Costa2005 Crandall2005, = packing in malware
Newsome2005,5uh2004] - [Bayer2009,¥in2007]

- - 10 ]

Dynamic Taint Analysis:
What values are derived from user input?

Automated Test Case
Generation
[Cadar2008,Godefroid2005 Sen2005]

Input Filter Generation
[costa2007 Brumley2008]

Forward Symbolic Execution:
What input will make execution reach this line of code? §
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Our Contributions (cont’d)

3: Systematize recurring themes in a wealth of
previous work
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Dynamic Taint Analysis:
What values are derived from user input?
1. How it works—example

2. Desired properties

3. Example issue. Paper has many more.
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. tainted . untainted A

Var Val
. get_ |nput )

- O-®+ ; /

49

Data derived from
user input is tainted

goto vy

T
TaintPropagation Var | Tainted?

t1=1x1], t2 = 1[x2]

BinOp X T
X1+ X2 tiv t2 v T
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Real Use:

. = get_input(&)

Exploit Detection

b

Jumping to

overwritten strcpy(bufferargv[1]) ;

return address

return ;
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. tainted . untainted A
. Var | val
- .=get_input(&) _var_|
y=x + 42 X 7
;oto v Input is tainted
T

TaintIntroduction

t = IsUntrusted(src)

Var | Tainted?

Input X T
P get_input(src)d t
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. tainted . untainted A
oy Var | Val
.=get_input» +)
X 7
= +
e @ s
Policy Violation
‘ goto . Detected
v
TaintChecking Var | Tainted?
Pgoto(ta) =-ta X T
(Must be true to execute) Yy T
Memory Load
Variables Memory
A .
Var Val Addr| Val
X 7 7 42
v o W
Var | Tainted? Addr| Tainted?
X T 7 F
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Problem: Memory Addresses

Wy A Var | Val
@ - get_input("&.‘ ) X 7
- ®)

y =load

Addr| Val

All values derived 7 42
from userinput .
are tainted?? Addr| Tainted?
—

7 F
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If either the address or the memory
cell istainted, then the valueis tainted

Policy 2:

Address
expression
is tainted

Overtainting

Unaffected values are tainted

printa

- e.g., exploits on safe inputs printb

TaintPropagation
v=A[X], t = tu[v], ta=1[X]
load(x) J tvta
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Load

Forward Symbolic Execution:

What input will make execution reach this line of code?

* Howitworks—example
* Inherent problems of symbolic execution

* Proposed solutions

5/19/2010 CarnegieMellon University 17

19/5/2010

PO”CV 1: mint dependsonly on the memory cell

:&u‘ A Var | Val
’ =get_i X 7
»W - Undertainting

Failing to identify tainted values Addr| Val
- e.g., missing exploits
7 42

Addr| Tainted?

v=AK, t=nl T

Load

load(x) J t 7 F

5/19/2010 CarnegieMellon University 14

Research Challenge
State-of-the-Art is not perfect for all

programs
Policy may wrongly

Undertainting:
Policy may miss taint detect taint
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Overtainting:

The Challenge

bad_abs(x is input)
if (x < 0) then
232 possible return -x
inputs if (x = 0x12345678) then
return -x
return x

0x12345678

Forward Symbolic Execution:
What input will make execution
reach this line of code?
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A Simple Example

x symbolic
can have Interpreterput)
What input will "V value
make execution
reach this line of
code?

Interpreter

return x return -x

x20A x20A
x 1= 0x12345678 x == 0x12345678
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Path Selection Heuristics

Symbolic Execution
Tree

However, these are heuristics. In the worst case all create an
exponential number of formulas in the tree height.

* Depth-First Search (bounded) ,Random Search [cadar2008]
* Concolic Testing [Sen2005,Godefroid2008]

5/19/2010

Other Important Issues

b Formalization- - et
B e [ - .:E,-
°
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FORWARD SYMBOLIC EXECUTION - More

e complex
Symbolic lumps  policies
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Y
5/19/2010 CarnegieMellon University 23

One Problem:
Exponential Blowup Due to Branches

@) Interpreter A Branch 1

Branch 2

A B W
dodbobed
Y

Exponential Number of Interpreters/formulas in # of branches
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Symbolic Execution is not Easy

* Exponential number of interpreters/formulas

e T m

* Exponentially-sizedformulas

substitution === @

* Solvingaformulais NP-Complete!
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Conclusion

* Dynamic taint analysis and forward symbolic
execution used extensivelyin literature

— Formal algorithm and what is done for each possible
step of execution often not emphasized

* We provided a formal definition and summarized
— Critical issues
— State-of-the-art solutions
— Common tradeoffs
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Thank You!

thanassis@cmu.edu

Questions?



