
19/5/2010

1

All You Ever Wanted to Know About
Dynamic Taint Analysis

&
Forward Symbolic Execution

(but might have been afraid to ask)

Edward J. Schwartz, Thanassis Avgerinos, David Brumley

5/19/2010 Carnegie Mellon University 1

(Yes, we were trying to overflow the title length field
on the submission server)

A Few Things You Need to Know About
Dynamic Taint Analysis

&
Forward Symbolic Execution

(but might have been afraid to ask)

Edward J. Schwartz, Thanassis Avgerinos, David Brumley

5/19/2010 Carnegie Mellon University 2

The Root of All Evil

5/19/2010 Carnegie Mellon University 3

Humans write programs

This Talk:
Computers Analyzing Programs Dynamically at

Runtime

Two Essential Runtime Analyses

5/19/2010 Carnegie Mellon University 4

Dynamic Taint Analysis:
What values are derived from user input?

Detect Exploits
[Costa2005,Crandall2005,

Newsome2005,Suh2004]

Detect
packing in malware

[Bayer2009,Yin2007]

Forward Symbolic Execution:
What input will make execution reach this line of code?

Input Filter Generation
[Costa2007,Brumley2008]

Automated Test Case
Generation

[Cadar2008,Godefroid2005,Sen2005]

Our Contributions

1: Turn English
descriptions into an
algorithm

– Operational
Semantics

2: Algorithm highlights
caveats, issues, and
unsolved problems
that are deceptively
hard

5/19/2010 Carnegie Mellon University 5

Dynamic Taint Analysis:
Is this value affected by user input?

Forward Symbolic Execution:
What input will make execution

reach this line of code?

Computers Analyzing Programs
Dynamically at Runtime

Our Contributions (cont’d)

3: Systematize recurring themes in a wealth of
previous work

5/19/2010 Carnegie Mellon University 6

19/5/2010

2

1. How it works – example

2. Desired properties

3. Example issue. Paper has many more.

5/19/2010 Carnegie Mellon University 7

Dynamic Taint Analysis:
What values are derived from user input?

5/19/2010 Carnegie Mellon University 8

x = get_input()

y = x + 42
…
goto y Input is tainted

untaintedtainted

x 7

Δ
Var Val

Tx

Tainted?Var

τ

Input
t = IsUntrusted(src)
get_input(src)↓ t

Taint Introduction

5/19/2010 Carnegie Mellon University 9

x = get_input()

y = x + 42
…
goto y

Data derived from
user input is tainted

untaintedtainted

y 49

Δ
Var Val

x 7

Ty

Tainted?

T

Var

x

τ

BinOp
t1 = τ[x1] , t2 = τ[x2]

x1 + x2 ↓ t1 v t2

Taint Propagation

5/19/2010 Carnegie Mellon University 10

Policy Violation
Detected

x = get_input()

y = x + 42
…
goto y

untaintedtainted Δ
Var Val

x 7

y 49

Tainted?

T

T

Var

x

y

τ
Taint Checking

Pgoto(ta) = ¬ ta

(Must be true to execute)

5/19/2010 Carnegie Mellon University 11

x = get_input()

y = …
…
goto y

…
strcpy(buffer,argv[1]) ;
…
return ;

Jumping to
overwritten

return address

Real Use:
Exploit Detection

Memory Load

5/19/2010 Carnegie Mellon University 12

Variables Memory

Δ
Var Val

x 7

Tainted?

T

Var

x

τ

μ
Addr Val

7 42

Tainted?

F

Addr

7

τμ

19/5/2010

3

Problem: Memory Addresses

5/19/2010 Carnegie Mellon University 13

x = get_input()
y = load(x)
…
goto y

All values derived
from user input

are tainted??

7 42
μ

Addr Val

Tainted?

F

Addr

7
τμ

x 7
Δ

Var Val

μ
Addr Val

x = get_input()
y = load(x)
…
goto y

Jump target could
be any untainted
memory cell value

Policy 1:

5/19/2010 Carnegie Mellon University 14

Load
v = Δ*x] , t = τμ[v]

load(x) ↓ t

Taint depends only on the memory cell

Taint Propagation

7 42

Tainted?

F

Addr

7
τμ

x 7
Δ

Var Val

Undertainting
Failing to identify tainted values

- e.g., missing exploits

jmp_table

Policy Violation?

5/19/2010 Carnegie Mellon University 15

x = get_input()
y = load(jmp_table + x % 2)
…
goto y

Policy 2:

Memory

printa

printb

Address
expression
is tainted

Load
v = Δ*x] , t = τμ[v], ta = τ[x]

load(x) ↓ t v ta

If either the address or the memory
cell is tainted, then the value is tainted

Taint Propagation

Overtainting
Unaffected values are tainted

- e.g., exploits on safe inputs

Research Challenge
State-of-the-Art is not perfect for all

programs

5/19/2010 Carnegie Mellon University 16

Undertainting:
Policy may miss taint

Overtainting:
Policy may wrongly

detect taint

• How it works – example

• Inherent problems of symbolic execution

• Proposed solutions

5/19/2010 Carnegie Mellon University 17

Forward Symbolic Execution:
What input will make execution reach this line of code? The Challenge

5/19/2010 Carnegie Mellon University 18

0x12345678

232 possible
inputs

bad_abs(x is input)
if (x < 0) then

return -x
if (x = 0x12345678) then

return -x
return x

Forward Symbolic Execution:
What input will make execution

reach this line of code?

19/5/2010

4

f t

f t

A Simple Example

5/19/2010 Carnegie Mellon University 19

x < 0

x symbolic
can have
any value

bad_abs(x is input)

If (x < 0)

If x == 0x12345678 return -x

return -xreturn x

Interpreter

InterpreterInterpreter

InterpreterInterpreter

x ≥ 0 Λ
x != 0x12345678

x ≥ 0 Λ
x == 0x12345678

x ≥ 0

What input will
make execution
reach this line of

code?

5/19/2010 Carnegie Mellon University 20

One Problem:
Exponential Blowup Due to Branches

Branch 2

Branch 3

Branch 1

Exponential Number of Interpreters/formulas in # of branches

Interpreter

5/19/2010 Carnegie Mellon University 21

Path Selection Heuristics

Symbolic Execution
Tree

• Depth-First Search (bounded) ,Random Search [Cadar2008]

• Concolic Testing [Sen2005,Godefroid2008]
…

However, these are heuristics. In the worst case all create an
exponential number of formulas in the tree height.

Symbolic Execution is not Easy

• Exponential number of interpreters/formulas

• Exponentially-sized formulas

• Solving a formula is NP-Complete!

5/19/2010 Carnegie Mellon University 22

branching

substitution
s + s + s + s +
s + s + s + s == 42

Other Important Issues

5/19/2010 Carnegie Mellon University 23

Formalization

Π = (s + s + s + s+
s + s + s + s) ==

42

More
complex
policies

Conclusion

• Dynamic taint analysis and forward symbolic
execution used extensively in literature
– Formal algorithm and what is done for each possible

step of execution often not emphasized

• We provided a formal definition and summarized
– Critical issues

– State-of-the-art solutions

– Common tradeoffs

5/19/2010 Carnegie Mellon University 24

19/5/2010

5

5/19/2010 Carnegie Mellon University 25

Questions?

Thank You!
thanassis@cmu.edu

